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ABSTRACT We introduce a model-based feedback-driven test adaptation approach for end-to-end user
interface testing of smart TVs. From the perspective of the TV software, the proposed approach is a
non-intrusive and completely black-box approach, which operates by interpreting the screen images. Given
a test suite, which is known to work in an older version of the TV, and a new version of the TV, to which the
test suite should be adapted, the proposed approach first automatically discovers user interface models for
both the older and the new version of TV by opportunistically crawling the TVs. Then, each test case in the
test suite is executed on the old version, and the path traversed by the test case in the respective UI model
is found. Finally, a semantically equivalent path in the UI model discovered for the new version of the TV
is determined and dynamically executed on the new version in a feedback-driven manner. We empirically
evaluate the proposed approach in a setup that closely mimics the industrial setup used by a large consumer
electronics company. While the proposed approach successfully adapted all the test cases, the alternative
approaches used in the experiments could not adapt any of them.

INDEX TERMS Consumer electronics testing, model-based testing, smart TV testing, test adaptation.

I. INTRODUCTION
Today’s smart TVs have large and complex codebases, which,
as any other software system, need to be tested thoroughly.
However, as smart TVs are quite different than mobile and/or
general-purpose computing platforms, testing them has its
own challenges. One of these challenges, which is also the
focus of this work, is the need to automatically adapt the
existing test cases to the new version of the TV. This is an
issue of great practical importance, especially for the end-
to-end user interface (UI) testing of these systems, since the
TV user interfaces tend to change in every version of the TV,
which typically breaks many (if not all) of the existing tests.

The associate editor coordinating the review of this manuscript and

approving it for publication was Vivek Kumar Sehgal .

One company that suffers from the fragility of their UI
test cases is Arcelik - the fourth largest home appliances
manufacturer in Europe operating in 100 different countries
under 10 different brand names, including Beko and Grundig.
Arcelik specifies the end-to-end UI test cases for their smart
TVs as a sequence of low-level remote controller (RC) com-
mands, such as pressing the left, right, up, down, or OK
button on the RC. To execute a test case, the commands are
fed to the TV one after another and the outcomes, i.e., whether
the test executions were successful or not, are checked by
analyzing the screenshots taken from the TV as needed.
Further information regarding this industrial setup is provided
in Section V-E.

Arcelik is, indeed, maintaining hundreds of UI test cases
in this form, encoding decades of experience in testing
smart TVs. Although abstractions are extensively used in the
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development of these test cases in the sense that the common-
alities between the test cases are captured in the modules of
their own, changes in the UIs (which typically occur at almost
every new version of the TV released to the market) break
almost all of the existing test cases. An overly simplified
hypothetical example would be: a test case consisting of the
RC commands [down, right, right, OK] to open
up the sound menu in the older version of the TV, may
suddenly become [up, left, left, OK] in the new
version. Needless to say, manually adapting the broken test
cases is tedious, error-prone, and costly [2], [3], [4], thus not
sustainable at all.

It, however, turns out that automating the test adaptation
process in the TV domain (and in the consumer electron-
ics domain in general) has its own specific challenges on
top of all the other challenges of test adaptation in the
related domains, including the mobile and web application
domains [5], [6], [7]. One challenge is that, although an inte-
gral part of test adaptation is to figure out what is actually on
the screen, smart TVs, unlike the web and mobile platforms,
do not necessarily provide object models for their screens,
such as Page Object Models (POMs) or Document Object
Models (DOMs), which report many useful attributes for the
UI elements present on the screens, including their types,
locations, and labels [8], [9], [10], [11]. Therefore, in the TV
domain, the screens need to be automatically interpreted by
using artificial intelligence (AI), including image processing
and optical character recognition (OCR).

Another challenge is that the changes in TV user inter-
faces typically result in profound changes in the sequence
of interactions to be carried out (especially in the higher
levels of the menu hierarchy), thus the sequence of screens
to be visited, to get the same functionality out of the TV.
Most of the existing test adaptation approaches, on the other
hand, tend to assume that changes are often confined within
individual screens, such that the sequence of screens to be
traversed stays intact. When this assumption does not hold,
the issues encountered during the adaptation process, are
typically resolved in an ad hoc manner by, for example,
carrying out random or semi-random interactions with the
hope of reaching the targeted UI elements and/or screens.
This, however, adversely affects both the effectiveness and
the efficiency of the test adaptation process in the TV domain
where even going from one UI element to another element on
the very same screen, may require a sequence of well-planned
interactions to be carried out. For example, since there is (in
the general case) no mouse or touch screen present for the
interactions, reaching a targeted UI element on the screen
requires pressing a correct sequence of buttons on the RC.

To address these challenges, we, in this work, present
a feedback-driven model-based test adaptation approach,
called AdapTV. At a very high level, given an older (S)
and new version (S ′) of the TV and a test suite (T ), which
is known to work on S, AdapTV 1) automatically discov-
ers the UI models M and M ′ for S and S ′, respectively,

by opportunistically crawling the user interfaces; 2) for each
test case in T , executes the test case on S and finds the path
traversed in M ; and 3) determines a ‘‘semantically equiv-
alent path’’ in M ′ and dynamically executes the path in a
feedback-driven manner on S ′.
From the perspective of the TV software, the pro-

posed approach is a non-intrusive and completely black-
box approach, thus addressing our first challenge discussed
above. This is because the proposed approach operates by
interpreting the screenshots of the user interfaces. And, the
rationale behind using amodel-based approach is tominimize
the guesswork in the presence of UI changes, which, in turn,
can improve both the effectiveness and the efficiency of the
test adaptation processes, thus addressing our second chal-
lenge. This is because having a UI model not only helps get
a big picture of the user interface, so that all the UI elements
located in other parts of the UI, can be figured out, but it can
also help construct a plan to reach any of these UI elements
by finding a path in the model.

In this work, we are, in particular, concerned with the UI
test cases, which aim to test the UI states of a TV, rather
than the internal states. To this end, Arcelik uses two main
types of test oracles. One type of oracle checks to see if an
expected sequence of UI states is visited. Another type checks
to see if the destination (i.e., the final) UI state has been
reached or not, regardless of the states visited in between.
Therefore, we define two different adaptation criteria, namely
route equivalency and destination equivalency, implementing
the former and the latter types of test oracles, respectively.

To evaluate the proposed approach, we carry out empirical
studies in a setup, which closely mimics the industrial setup
used by Arcelik. In the experiments, we use the real test cases
developed byArcelik, which reflect the decades of experience
Arcelik has gained in testing smart TVs, together with some
automatically generated test cases, which are designed to
increase the diversity in testing. While the proposed approach
successfully adapted all the test cases under both adaptation
criteria, the alternative approaches used in the experiments
could not adapt any of them under any criterion.

In our previous work (an industrial abstract) [12],
we briefly introduced the idea and the rationale behind our
model-based adaptation approach without providing any fur-
ther details andwithout reporting any empirical results. In this
work, however, we provide all the details regarding the pro-
posed approach and empirically evaluate it by using real as
well as randomly generated test cases.

Note that although we have evaluated the proposed
approach on the TVs produced by a single company, namely
Arcelik. The proposed approach can readily be applied to
test other TVs as well as other consumer electronics with
screen-based UIs. This is mainly due to the fact that, from
the perspective of the system software, we treat the system as
a black box and provide a non-intrusive adaptation approach.

The remainder of the paper is organized as follows:
Section II introduces the industrial case; Section III provides
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a motivating example; Section IV presents the proposed
approach; Section V carries out the empirical studies;
Section VI discusses the threats to validity; Section VII
presents the related work, and Section VIII finishes with the
concluding remarks and some future work ideas.

II. INDUSTRIAL CASE
Arcelik expresses the UI test cases for its smart TVs in terms
of low-level RC commands. One reason for this is to carry
out the end-to-end testing of the TVs in a completely black
box manner. Another is that, for various technical reasons,
including certain security and privacy concerns, the TV does
not provide any facilities for automating testing at the system
level.

As an example, Figure 1a presents the home screen taken
from Grundig TV v02.025.00. An overly simplified test case,
which can be executed on this very same screen, is to open
up the Settings menu. Starting from the currently selected UI
element Channel Search, this can be achieved by executing
the RC commands [down, right, right, right,
right, OK] in the order they are given, which would visit
the UI elements [Records, Media Center, Screen Share, Tools,
Settings] before opening up the Settings menu.
To run the UI test cases, Arcelik uses a setup consist-

ing of a number of hardware components, including a pro-
grammable remote controller (Tira [13]) and a connected
capture device (UCD [14]). Figure 2 presents a picture of
this setup, replicated at Sabanci University. Tira is a pro-
grammable remote controller, which is capable of sending
any signal that can be sent by a regular remote controller.
Being a USB device, it simply replays the pre-recorded
signals for the requested RC commands. In this setup,
Tira is used to execute the RC commands in the test
cases.

The UCD device, on the other hand, is a compact-sized
USB device that intercepts the signal sent to the TV panel,
such that the video stream can be recreated in a com-
puter. UCD is, indeed, a frequently used device for auto-
mated testing of display-related ASICs and display electron-
ics as it offers a flexible and robust method for capturing
the images/streams without the need for an external cam-
era, thus avoiding all the associated technical difficulties,
including camera calibration. In this setup, Arcelik uses the
UCD device to capture the screenshots, so that whether the
expected UI states have been reached during and/or after
the execution of the test cases, can automatically be deter-
mined by analyzing the images. Both devices are connected
to a workstation where the drivers for these devices are
pre-installed.

In this work, AdapTV uses exactly the setup for
model-based test adaptation.More specifically, Tira is used to
interact with the TV under test via sending RC signals. UCD
is used to capture the screenshots so that the images can be
analyzed to determine the current state of the UI. And, the
main adaptation logic runs in the workstation.

TABLE 1. Notations used in the paper.

III. MOTIVATING EXAMPLE
In this section, we use our running example in Section II
to demonstrate, at a smaller scale, the current issues, which
Arcelik faces every time the TV user interfaces change.
In the aforementioned example, executing the test case
[down, right, right, right, right, OK] on
Grundig TV v02.025.00 starting from the home screen given
in Figure 1a, was opening up the Settingsmenu. However, the
home screen in the newer version of the TV, namely Grundig
TV v04.015.00, has changed as shown in Figure 1b.
On this newer version, executing the same test case

as it is, opens up the Application Center, instead of
the Settings menu. Note, however, that although the UI
has changed, the functionality to be tested remains to
be intact. Therefore, the same test case is desired to
be executed on the newer version. To this end, the test
case should be adapted to [right, right, right,
right, right, right, OK], which, starting from the
currently selected UI element Input Source in Figure 1b,
opens up the Quick Settings menu.
Arcelik has been manually adapting the UI test cases every

time the TV user interfaces change. Although many of the
commonalities present in the test cases are abstracted away in
modules (e.g., in utility functions), it is still a tedious, error-
prone, and costly operation for Arcelik to manually fix all
the broken test cases. The proposed approach, on the other
hand, automatically adapts the test cases in a dynamic and
feedback-driven manner.

IV. APPROACH
In this paper, we present a feedback-driven model-based test
adaptation approach for smart TVs. From the perspective of
the TV software, the proposed approach is a non-intrusive and
completely black-box approach, which operates by interpret-
ing the screenshots of the UIs to interact with the TV.

At a very high level, given a test suite T , which is known to
be valid for an older version S of the TV, and a new version
S ′ of the TV, to which the test cases are to be adapted, the
proposed approach operates in two phases, namelymodel dis-
covery phase and adaptation phase. In the model discovery
phase, we automatically discover the UI models M and M ′
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FIGURE 1. Example screenshots for demonstrating the changes made in the home screens of two different TV versions.

FIGURE 2. Replication of the smart TV testing framework used by Arcelik.

for the older and the new version of the TV, respectively,
by opportunistically crawling the UIs. And, in the adaptation
phase, each test case t ∈ T is executed on S and the path
P traversed by t in M is determined. The adaptation of t
to S ′ is achieved by first finding a ‘‘semantically equivalent
path’’ P′ in M ′ and then dynamically executing this path in
a feedback-driven manner on the S ′. Table 1 lists some of
the notations that we frequently use throughout the paper to
represent various aspects of the proposed approach.

Next, we discuss the computational primitives as well as
the artifacts used by both the model discovery and the adap-
tation phases (Sections IV-A-IV-D). Later, we provide the
details regarding each phase.

A. UI MODELS
An integral part of the proposed approach is the automat-
ically discovered UI models. The ultimate goal of using a

model-based adaptation approach is to minimize the guess-
work, which happens when the UI moves to an unexpected
state during the adaptation process. Therefore, the UI models
we discover should enable us not only to figure out the current
state of the UI, but also to get to any state of interest by using
the RC commands, so that the adaptation process can be put
back on track.

To this end, we express our models as non-deterministic
finite state machines. In these models, each state denotes
a selection, e.g., a selected UI element, such as a button
or an icon. And, the transitions between the states, each of
which is labeled with an RC command, represent the possible
navigational paths that can be between the UI elements by
using the RC.

Note that our models are purposefully non-deterministic
because the same RC command on the very same UI element
(i.e., on the same model state) may result in a different transi-
tion. For example, the behavior of pressing the backRC but-
ton on aUI elementmay depend on the actual path followed to
get to the element, as this button typically takes the user to the
preceding UI element visited. Therefore, depending on the
previous state, a different transition can be taken. Although
all the scenarios, in which we observed such behavior in our
experimental platforms, could have been generalized into a
small number of cases, each of which would then be handled
in a specializedmanner, we decided not to exercise this option
and make the models non-deterministic instead, with the goal
of improving the generality of the proposed approach.

Figure 3, as an example, presents a simple TV menu
encountered in one of our empirical studies together with a UI
model automatically discovered for it. Note that, for the sake
of simplicity, only a small portion of the actual UI model,
which contains two RC commands, namely up and down,
is given in the figure. Furthermore, in this screenshot as well
as in the other screenshots presented throughout the paper,
we, as needed, use cropped images extracted from the actual
screenshots of the entire screens both to make the figures
more readable and to save some space.

Going back to our example in Figure 3, the UI model indi-
cates that pressing the down RC button when the currently

32098 VOLUME 11, 2023



M. Y. Azimi et al.: AdapTV: A Model-Based Test Adaptation Approach for End-to-End UI Testing of Smart TVs

FIGURE 3. A simple TV menu (a) and a simplified version of the UI model discovered for it (b).

selected UI element in the menu is Language & Keyboard,
would select the UI element Accessibility Settings. And,
pressing thedown button again would selectAccessories, etc.
Note that the selected UI element in the menu is highlighted
with a bluish background color (Figure 3a). Note further that
each state in the UI model (Figure 3b) represents the selected
version of the respective UI element. This is because each
model state represents the state of the UI after an outgoing
transition from the current state is taken, which would select
the UI element represented by the target state.

B. DETECTING SELECTIONS
Each state in the UI model corresponds to a selection. There-
fore, to map the current state of the UI to a model state, the
selection on the screen needs to be determined. To this end,
one observation we make is that as smart TVs are meant
to be used by a wide spectrum of age groups ranging from
children to the elderly, their user interfaces are generally
designed, such that the selected elements on the screen can
easily be located without any ambiguity. We further observe
that one prominent way of achieving this is to box the selected
UI element by using a distinctive (and sometimes fading)
color either in the form of an outlined box, e.g., with a solid
bounding box around the selection, or in the form of a filled
box, e.g., with a solid background. For example, in Figure 3
the selected UI element Language & Keyboard is highlighted
with a distinctive bluish background color.

For this work, we have, therefore, developed a config-
urable, color-based detector. In our context, a detector takes
as input a screenshot and returns the cropped image(s) of the
selection as output. The way these cropped images are used
for mapping the current state of the UI to a state in the UI
model will be discussed later in Section IV-C.
Our detector is configurable in the sense that given an

example image of a selection, it figures out the parameters
to be used for automatically detecting all the selections of
the same sort. Note, however, that the proposed approach
can readily be used with any detector as long as the cropped
images of the selection are returned.

Given an example image of a selection, we determine the
spectrum of colors used in the background and/or in the
bounding box of the selected UI element and express it as
a filter. Then, given a screenshot, we use the filter to locate
the regions of the screen that use the same (or a similar)
color spectrum. Next, we apply thresholding to extract the
contours [15] as well as the respective bounding boxes and
use non-maximum suppression [16] to select a single bound-
ing box from many overlapping bounding boxes. We use an
adaptive thresholding algorithm with the Gaussian method
for the former. For the latter, we use non-maximum suppres-
sion with an overlapping ratio of 30%. Finally, among the
remaining bounding boxes, we use additional heuristic-based
filters to eliminate the bounding boxes that are highly unlikely
to represent an interactable UI element.

The rationale behind these additional filters is to eliminate
the bounding boxes that are too small, which may indicate
that the respective regions are not meant to be seen by human
beings, or that are too large, which may indicate that the
respective regions are not meant to be a part of a UI. In the
experiments, we, indeed, observed that too small or too large
bounding boxes were always caused due to some pixels that
could barely be seen (if at all possible) by the naked eye, thus
not representing any UI elements.

Therefore, we specify the additional filters in terms of the
minimum andmaximumvalues for the height, width, and area
of the bounding boxes, which are all expressed in relation
to the entire screenshot. Note that these filters can also be
used to detect the selected UI elements based on their sizes.
This is important because an alternative way of visualizing
the selected elements is to make them larger than the other
comparable elements on the screen.

One observation wemake is that the TVUIs also use visual
clues (as needed) to indicate the contexts for the selected
UI elements. It turns out that determining the context of a
selection is an important task because the same UI element
may be present in different contexts with different function-
alities. For example, in Figure 4a, while the current selection
is Advanced, the context for this selection is Picture. There
is, however, another UI element with exactly the same label
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FIGURE 4. Detecting contexts for the selections.

and with exactly the same look and feel, but in the context of
Sound (Figure 4b). While the former opens up the advanced
settings menu for the pictures, the latter does that for the
sound. As the functionalities of these identical-looking UI
elements are different, they should map to different states in
the UI model.

In this work, we use our detector logic to also determine
the contexts. More specifically, a primary detector, which is
used for detecting the selected UI elements, can be associated
with many (zero or more) context detectors, which are used
for detecting the contexts for the selections. Going back to our
example in Figure 4a, while the primary detector would return
the cropped image in Figure 4c as the selected UI element, the
associated context detector would return the cropped image
in Figure 4e as the context for the selection.

Another observation we make is that there may be multiple
different ways of visualizing the selected UI elements. For
example, the way the selections are visualized in the settings
menumay be different than the way they are visualized on the
home screen. To account for this, we allow multiple primary
detectors to be defined, each of which may come with its
own associated set of context detectors. In the presence of
multiple primary detectors, each detector is activated sepa-
rately and the cropped images obtained from the detectors are
collected for later processing (Section IV-C). Note, however,
that alternativeways of visualizing the selections are typically
employed for different parts of the TV. That is, on a single
screen there is typically only one way of visualizing the
selectedUI elements, in which case only one primary detector
would return some cropped images. This was, indeed, the
case in our experiments where we never had multiple primary
detectors returning cropped images for a single screen.

C. WhereAmI: MAPPING SELECTIONS TO MODEL STATES
At a very high level, a detector returns a (possibly empty)
collection of rectangular images cropped from the screenshot,
collectively representing the selection on the screen. Given
such a collection, we merge the images into a single image,
called the ID-image, such that the resulting image can be used
to map the selection to a state in the UI model. Note that for
a primary detector, which is associated with a set of context
detectors, the ID-image is formed for the collection of all the
images returned from the detectors.

To form the ID-image for a given collection of images,
we first sort the images by the coordinates of their upper-left
corners and then append them one after another. Note that the
sorting operation guarantees that, given the same collection of
images, the same ID-image can always be deterministically
formed.

After computing the ID-image for a selection, the next step
is to map the ID-image to a state in the UI model. We refer to
this functionality as the WhereAmI functionality. In themodel
discovery phase, WhereAmI is used to figure out whether the
current UI state has been encountered so far or not, which
determines if the underlying UI model needs to be populated
with a new state. In the adaptation phase, WhereAmI is used
to figure out where the TV is currently at in the UI model
after executing an RC command, which determines the next
RC command to be executed to reach a target state.

To map the UI states to the model states, we associate a
model state with the ID-image of the selection represented
by the state. Therefore, one way of mapping a selection
to a model state is to compare the respective ID-images.
This, however, turns out to be a costly solution due to its
space and runtime overheads. The space overhead of the
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aforementioned solution is high because all the ID-images
may need to be loaded into the memory for the comparisons.
The runtime overhead is also high because the ID-image of
the selection may need to be compared to all the ID-images
associated with the model states and comparing images is
costly. Note further that these overheads should be paid at
every iteration of both the model discovery and the adaptation
phases as mapping the current UI state to a model state needs
to be performed after executing every RC command.

We, therefore, use a hashing function, called Locality Sen-
sitive Hashing (LSH), which maps similar images to the
close-by hash values [17]. Consequently, rather than keeping
the actual ID-images for the model states, we keep their hash
values. We, in particular, use the dHash algorithm, which
basically operates by computing the differences between the
adjacent pairs of pixels [18].

Given an ID-image, we first resize it to a 128x129 pixel
(i.e., 128 rows by 129 columns) image by using bilinear
interpolation. Then, we convert the image to grayscale as
grayscale images tend to produce better results. Next, for each
row in the resized image starting from the first row, we iterate
over all the pixels in the row from the right-most to the left-
most pixel. For each adjacent pair of pixels, we keep one bit
of information, the value of which is 1 if the first pixel value
in the pair is smaller than the second one and 0 otherwise.
Consequently, for a given resized ID-image, we compute a
16384-bit (128 ∗ 128-bit) hash value.
The number of bits for storing the hash values, thus the

dimensions of the resized ID-images, is selected, such that
the subtle, but relevant differences between the ID-images,
thus the selections, can be detected. To this end, the UI
elements, which slightly change their appearances depending
on the RC commands executed on them, can be used. The
Bluetooth Volumemenu item given in Figure 4b is an example
of such an element. As the volume is increased, the number
on the right-hand side of the element increases by one. So, the
smallest number of bits that can distinguish between different
Bluetooth volumes, such as between volume 0 and volume
1, is a good candidate to use, which, indeed, was exactly
what we did to determine the size of the hash values (i.e.,
16384 bits) in the experiments.

To compare two hash values for determining whether
the respective ID-images, thus the selections, are the same,
we use Hamming distance by taking the potential noise in
the images into account. More specifically, we compute the
number of bits that are different between the bit representa-
tions of the hash values. The smaller the distance, the more
the respective ID-images, thus the respective selections, tend
to be similar.

Therefore, tomap a selection to amodel state, we first com-
pute the hash of the ID-image constructed for the selection
and then compare it to the hash values associated with the
previously discovered model states. If the minimum differ-
ence between the hash value of the selection and that of a
model state is smaller than a predetermined threshold (in our

case, 80), the selection is mapped to the state. If no such state
can be found, then the selection is considered to not have
been encountered before. In the presence of multiple poten-
tial equivalent states, the state with the minimum distance
is selected. The aforementioned threshold value is selected,
such that the effect of the noise in the ID-images is reduced
as much as possible, yet the relevant differences between the
selections can still be detected.

D. TEST CASES
In this work, the TV under test is treated as a black box.
We, therefore, express a test case as a sequence of RC com-
mands that can be carried out against the TV. That is, a test
case in our context corresponds to a path in a UI model
(Section IV-A).

E. MODEL DISCOVERY PHASE
We automatically discover the UI models for both the older
and the new version of the TV by opportunistically crawling
the user interfaces. At a very high level, given a set of RC
commands to be used for the interactions, the crawler aims to
execute each command on every interactable UI element in
all the screens at least once.

Algorithm 1 describes the model discovery process.
At each iteration of the process, after executing an RC com-
mand, the screenshot of the UI is taken (line 10) with the
help of the UCD device (Section II). Then, the screenshot
is analyzed to determine the selection (line 11, Section IV-
B). If a state representing the selection is not present in
the UI model that has been discovered so far, the model is
populated with the newly discovered state (line 12). In either
case, the state representing the selection is marked as the
current state (line 14). While doing so, the transition labeled
with the RC command executed, which took the system from
the previous state to the current state, is inserted into the
model, if not already present in the model (line 13). Next,
the RC command to be executed in the subsequent iteration
is determined in an opportunistic manner by steering the
crawler to the less-explored parts of the UI model, so that
each RC command has a chance of being executed on every
state (line 8).

Algorithm 2 presents the details of the next_cmd function
in Algorithm 1 (line 8). The crawler first figures out whether
there is any RC command, which has not yet been executed
on the current state (line 2). If so, one RC command among
all such commands is chosen randomly (line 4) while giving
precedence to the navigational commands (i.e., the arrow
buttons on the RC) with the goal of discovering more states
as early as possible. Otherwise, i.e., when each RC command
has been executed at least once on the current state, then
the nearest state with some missing outgoing transitions (i.e.,
with some RC commands that have not yet been executed on
the state) is determined (line 6) by using a breadth-first search
(BFS) traversal of the UI model starting from the current
state (i.e., by using an unweighted shortest path algorithm).
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Algorithm 1Model Discovery
1: function discoverModel(Model M )
2: Reboot the TV, if needed
3: screen← take_screenshot()
4: sprev← whereAmI (M , screen)
5: Mark sprev as global entry state
6: Populate M with sprev, if needed
7: while the termination criterion has not been reached do
8: cmd ← next_cmd(M , sprev)
9: execute_cmd(cmd)

10: screen← take_screenshot()
11: scurr ← whereAmI (screen)
12: PopulateM with scurr , if needed
13: PopulateM with the transition from sprev to scurr labeled cmd , if needed
14: sprev← scurr
15: end while
16: returnM
17: end function

Algorithm 2 Opportunistic Crawling
1: function next_cmd(Model M , State s)
2: Let cmdsmissing be the missing RC commands on s
3: if cmdsmissing ̸= ∅ then
4: Let cmdnext be a randomly selected RC command in cmdsmissing
5: else
6: Let starget be the nearest state from s with some missing RC commands inM
7: if starget == None then
8: Raise the termination signal for the discovery process
9: return

10: end if
11: Let shortest_path be the shortest path from s to starget in M
12: Let cmdnext be the first RC command to be executed in shortest_path
13: end if
14: return cmdnext
15: end function

In the BFS traversal, the shortest path to the nearest state
selected is also computed (line 11). Then, the crawling pro-
cess is opportunistically steered towards the selected state
by choosing the first RC command in the computed shortest
path as the RC command to be executed in the subsequent
iteration (line 12).

Note that we don’t force the search to reach the selected
state before the discovery process can resume. More specif-
ically, if everything goes as predicted by the underlying UI
model, the selected state will be reached and a missing RC
command on this state will be executed. If, however, on the
path to the selected state, a state with some missing RC
commands was encountered (such as a state unexpectedly
visited due to the non-determinism in the TV), the discovery
process would resume with executing a randomly chosen
missing command on the state (line 9 in Algorithm 1), thus
the initial goal of reaching the nearest state selected, would
gracefully be discarded.

Note that, as indicated byAlgorithm 1, themodel discovery
process always starts with rebooting the TV (line 2). This
is mainly for detecting the global entry states in the UI
models (line 3-5), which are, indeed, the first states that are
discovered right after the TV is rebooted. We reboot the TV
before starting the crawling because otherwise, the global
entry states would depend on the state of the TV, from which
the crawling has started. Furthermore, the model discovery
process (Algorithm 1) takes as input the current version of the
UI model (line 1). Therefore, the process can be started either
with an empty model or with a pre-populated model without
requiring any additional operations as the current state of the
UI is determined before starting the discovery process (lines
3-5). This enables the model discovery process to be stopped
and started as needed.

The iterations of the discovery process end when for each
distinct pair of model state and RC command, there is at least
one outgoing transition from the state labeled with the RC
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command. This primary stopping criterion is, indeed, further
augmented with an optional secondary stopping criterion,
which terminates the discovery process after a predetermined
number of RC commands have been executed. Having a
secondary stopping criterion is practical, especially for pre-
venting potential infinite loops and/or for taking the amount
of available resources for the discovery process into account.

F. ADAPTATION PHASE
Given a test suite T to be adapted and the UI models M and
M ′ that are automatically discovered for the older version S
and the new version S ′ of the TV, respectively, the next step
is to adapt each test case t ∈ T from S to S ′. To this end,
we first execute t on S and determine the path P taken by it
in M , which is indeed a sequence of states (Section IV-F3).

The problem of adapting t to S ′ is then cast to the problem
of finding a semantically equivalent path P′ in M ′. Note that
there are multiple ways of defining the equivalency relation
between the paths. For this work, we, in particular, distinguish
between two different equivalency criteria: route equivalency
and destination equivalency (Section IV-F2). While the for-
mer seeks for visiting an equivalent state inM ′ for each state
in P, the latter aims to visit an equivalent state only for the
destination state (i.e., the last state) in P, regardless of the
intermediate states visited. Note that both criteria depend on
the notion of state equivalency.

1) STATE EQUIVALENCY
To determine whether a state s in M is equivalent to a state
s′ in M ′, we use a weighted similarity measure consisting of
three metrics, namely semantic similarity, lexical similarity,
and likelihood. Given s and s′, the first two metrics leverage
the information conveyed in the ID-images associated with
s and s′ and they do this regardless of the current adaptation
process. That is, given the same states, these metrics always
return the same value. The last metric, however, takes the cur-
rent adaptation process into account by favoring the states that
are closer to the one being currently visited by the adaptation
process.

Regarding the first two metrics, one observation we make
is that the UI elements in smart TVs are typically associ-
ated with explanatory texts, such as labels. Even when an
image-only icon appears on a screen, it is often the case that
either the icon has some embedded human-readable text or
the icon gets a label as soon as it is selected. We believe that
this is because the user interfaces of the TVs are designed in
such a way that allows them to be easily used even for the first
time by a wide spectrum of age groups without any training.

Without losing the generality of the proposed approach,
we, therefore, opted to compute the semantic and lexical
similarities based on the texts extracted from the ID-images.
Note that directly comparing the ID-images, such as by using
their hash values as we did in the model discovery phase
(Section IV-E), is not a viable solution because, in the adap-
tation phase, we are interested in comparing the selections

that come from two different versions of the TV. Therefore,
the look and feel of the UI elements, such as the icons, may
differ between the versions. Furthermore, in the absence of
any text associated with a selection, such as the presence of an
image-only icon, image classification techniques [19] can be
used to label the icon first. Then, the label (possibly together
with the explanatory text that comes with it) can be used with
the semantic and lexical similarity metrics proposed in this
work. The accuracy of the classifications can even further be
improved by training domain-specific classifiers as the user
interfaces in the TV domain tend to use the same or similar
icons for the same or similar functionalities. We, however,
leave this part as future work.

a: EXTRACTING TEXTS
To extract the texts from the ID-images, we use optical char-
acter recognition (OCR) [20]. We do this in two stages: text
detection and text recognition. In the text detection stage,
we determine the boundaries of the regions in the given
image [21], which are likely to contain some texts. To this
end, we use a pre-trained model, called craft_mlt_25k, which
was trained by using the ICDAR datasets with 25 thou-
sand iterations for fine tuning [22]. Furthermore, we utilize
non-maximum suppression [16] for merging the overlapping
regions.

After the potential text regions in the ID-image are iden-
tified, we, in the text recognition stage, apply OCR to the
cropped regions only, rather than to the entire image. We do
this because our feasibility studies demonstrate that the for-
mer generally performs better than the latter in terms of
OCR accuracy. In the presence of multiple text regions, the
cropped images are first ordered by their upper-left corners
and then the text is extracted. For text recognition, we use
a pre-trained model, called TPS-ResNet-BiLSTM-Attn-case-
sensitive, which was trained by using a large number of
synthetic and real-world datasets [23].

Once the text from an ID-image is extracted, it is associated
with the respective state in the UImodel, so that the extraction
task is not repeated redundantly. That is, for each state in a UI
model, the text is extracted only once.

b: SEMANTIC SIMILARITY
Given two states, the semantic similarity between them is
computed as a measure of how close the meanings of the texts
associated with the states are. To this end, we developed a
similarity metric inspired by Rau et al. [24].

Given two states s and s′ where s.text and s′.text represent
the texts extracted from these states, respectively, we first pre-
process each text by tokenizing it, removing the non-literal
characters, and applying stemming. We, however, choose not
to eliminate the stop words as they can play an important
role in our context, such as helping to identify the difference
between ‘‘sign in’’ and ‘‘sign up.’’
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FIGURE 5. Semantic similarity computation between state s and s′ where s.text =‘‘TV Shows’’ and s′.text = ‘‘Music
Videos.’’

We then form an nxm matrix where n and m are the num-
bers of extracted tokens in s.text and s′.text , respectively. The
value stored in each cell of this matrix represents the cosine
similarity between the respective tokens. To this end, we use
Google’s pre-trained word2vec model, which has a vocabu-
lary of about 3 million words and phrases trained by using
about 100 billion words from a Google News dataset [25].

Finally, the semantic similarity between s and s′ is com-
puted as the mean of the maximum cosine similarities
reported in the columns of the constructed matrix. To deter-
ministically compute the similarities (which can be an issue
when n ̸= m), we construct the matrix, such that n ≤ m
always holds true. Note that the semantic similarity metric
assumes a value between 0 and 1, inclusive. The higher the
value, the more the texts are semantically similar to each
other.

Figure 5 presents an example where the semantic similarity
between two states with the extracted texts ‘‘TV Shows’’ and
‘‘Music Videos’’ is computed. After pre-processing, we have
two bags of tokens: {tv, show} and {music, video}. Thus, a
2× 2 matrix is formed and the pairwise similarities between
the tokens are computed by using Google’s word2vec model.
Then, the maximum value in each column (0.24 and 0.32) is
determined and their arithmetic average (0.28) is computed
as the semantic similarity score between the texts.

c: LEXICAL SIMILARITY
While the semantic similarity metric aims to quantify the
similarity in meanings, the lexical similarity metric quantifies
the lexical similarity by using a normalized edit distance
function.

One reason as to why we need an additional similarity
metric is that not all the tokens extracted from the texts may
be included in the vocabulary of the word embedding model
being used. For example, the word ‘‘Grundig,’’ which fairly
frequently appeared on the TV menus in the experiments as
it is another brand name owned by Arcelik, was not a part
of Google’s word2vec model. Since nothing would be known
about these tokens, no semantic similarity could be computed.
In these cases, we use lexical similarity instead.

Another reason is that when one set of tokens were sub-
sumed by another set, the semantic similarity computation
discussed above always produces a perfect score, which could
be misleading. For example, if one of the texts contains only

one token, namely ‘‘TV,’’ then this text will have a perfect
semantic similarity score with any texts containing the same
word, including ‘‘TV,’’ ‘‘TV Shows,’’ ‘‘TV Movies,’’ and
‘‘TV Games,’’ where one would expect to have a higher score
for the first choice as it represents an exact match. Therefore,
in these cases, we not only account for the semantic similarity
but also take the lexical similarity into account.

Given two states s and s′, we compute the lexical similarity
by using the following normalized edit distance formula:

lex_sim(s, s′) = 1−
edit_distance(s.text, s′, text)

max(|s.text|, |s′.text|)
(1)

where | ∗ .text| operator returns the number of characters in
the given text and the edit_distance function computes the
edit distance between two texts, i.e., the minimum number of
operations required to transfer one text into the other.

d: LIKELIHOOD
Given the current UI state s′, the likelihood for state s′′ to
be the next target state to visit during an adaptation process,
drops exponentially with the distance between the states:

likelihood(s′, s′′) = e−d/20 (2)

where d is the length of the shortest path from s′ to s′′ in the
underlying UI model.

As discussed in Section IV-B, there may be multiple UI
elements with the same look and feel, e.g., with the same
textual information, appearing in different parts of the TV
with different functionalities. For example, a UI element
with the label Music may appear both on the home screen
and in the settings menu, serving different purposes. While
the former enables the user to play music, the latter allows
changing the music-related settings. If we were to use only
the semantic and lexical similarity metrics, both of these UI
elements would get the same similarity score. The likelihood
metric, however, favors the UI element that can be reached by
executing fewer number of RC commands. That is, it favors
the states that are closer to the current state, rather than
the states that are farther away. The rationale behind this
metric is that, in a sequence of RC commands, the preceding
commands typically determine the context for the current
command. For example, if a test case aims to evaluatewhether
the music-related settings can be configured correctly or not,
the test case needs to visit the settings menu first. Therefore,
if the TV is already in the settings menu and we are seeking to
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interact with a UI element labeledMusic, it is highly unlikely
that the element we are looking for is the one on the home
screen. After all, if the Music item on the home screen was
meant to be visited, the original test case would have executed
additional commands to change the context accordingly by
visiting the home screen.

e: WEIGHTED STATE EQUIVALENCY SCORE
Given the current state s′ in M

′

and the target state s in
M , the equivalent state of which needs to be visited in M ′,
we compute the state equivalency score of a state s′′ inM ′ by
computing the weighted sum of the scores obtained from the
previous three metrics:

state_eq_scr(s, s′, s′′) = w1 ∗ sem_sim(s, s′′)

+ w2 ∗ lex_sim(s, s′′)

+ w3 ∗ likelihood(s′, s′′) (3)

If the semantic similarity score can be computed (i.e., if all
the tokens are in the vocabulary of the word2vec model),
we use w1 = 0.6, w2 = 0.2, and w3 = 0.2. We assign more
weight to the semantic similarity because, between differ-
ent versions of the TV, even when the textual information
associated with a UI element gets changed, the meaning
is typically preserved (e.g., changing the ‘‘Next’’ button to
a ‘‘Proceed’’ button). If, however, the semantic similarity
cannot be computed, we usew1 = 0,w2 = 0.8, andw3 = 0.2.
We value lexical similarity more in these cases because we
first look for some sort of similarity before taking the physical
proximity into account.

f: FINDING THE EQUIVALENT STATES
Given the current state s′ inM ′ and the target state s inM , the
equivalent state s̃ of s inM ′ is determined by first computing
the weighted equivalence score between s and every state
in M ′, i.e., by calling state_eq_scr(s, s′, s′′) for each s′′ in
M ′. The scores are then sorted in reverse order and the top
p states (in our case, p = 1) are chosen as the candidate
equivalent states of s. This functionality will be referred to
as find_equivalent_state in the remainder of the paper.

2) PATH EQUIVALENCY
Given the notion of state equivalency, we define two different
types of path equivalency criteria, which are inspired by the
test oracles used for user interface testing in the TV domain,
namely route equivalency and destination equivalency.
The route equivalency aims to visit an equivalent state in

M ′ for every state in P while preserving the order, in which
the states are visited:
Definition 1: Given the path P = [s0, s1, . . . , sk ], which

is a sequence of states traversed by a test case t in M during
its execution on S, the route equivalency criterion is achieved
when t is adapted to a test case, which makes S ′ to follow
a path P′ = [s′0, s

′

1, . . . , s
′
l] in M

′ where for each state si in
P (0 ≤ i ≤ k), an equivalent state s′li exists in P

′, such that
l0 < l1 < · · · < lk .

Note that due to the changes in the user interfaces, addi-
tional states may need to be visited in M ′ to achieve the
route equivalency. That is, the equivalent states of inter-
est in M ′ do not need to be visited in a consecutive
manner.

Destination equivalency, on the other hand, aims to visit an
equivalent state of just the destination state (i.e., the last state)
in P regardless of the path taken (i.e., the intermediate states
visited).
Definition 2: Given a path P = [s0, s1, . . . , sk ] traversed

by test case t in M during its execution on S, the destination
equivalency criterion is achieved when t is adapted to a test
case, which makes S ′ to follow a path P′ = [s′0, s

′

1, . . . , s
′
l] in

M ′, such that s′l is an equivalent state of sk .

3) TEST ADAPTATION
Algorithm 3 presents the details of adapting a test case t from
S to S ′ given the automatically discovered modelsM andM ′.
The aforementioned algorithm, indeed, aims to achieve route
equivalency. After discussing this algorithm in detail, we pro-
vide details regarding how the algorithm can be adapted to
achieve destination equivalency.

a: RUNNING THE TEST CASE ON THE OLD VERSION
The first step of the adaptation process is to run t on S and
determine the path P taken by t in M (lines 2-9). To this
end, the TV running version S is rebooted, if needed (line
2). Rebooting the TV is generally required because the TV
under test typically needs to be rebooted in between the test
runs to make sure that the order, in which the test cases are
executed, does not affect the test results. Note, however, that
the proposed approach does not actually depend on reboot-
ing the TV in between the test runs. For example, the test
cases may come with their own tear-down sequences or no
tear-down sequence may actually be needed. The AdapTV
will be agnostic to that since it always starts with figuring
out the current state of the UI before executing a test case
(line 7).

We then execute the RC commands in t , which is indeed
expressed as a sequence of RC commands [c1, c2, . . . , ck ]
(line 5). After executing an RC command ci (1 ≤ i ≤
k), we use the WhereAmI functionality (Section IV-C) to
determine the resulting state si of the system in M (line 7).
The result is a path P = [s0, s1, . . . , sk ] traversed by t in
M . Note that, throughout the paper, the states subscripted
with 0, such as s0 and s′0, are used to refer to the global
entry states. Note further that the proposed approach keeps
on updating the underlying UI model even in the adaptation
phase. For example, if there is no previously known transition
from si−1 to si with the label ci in M , then M is populated
with the newly discovered transition and with the state si
(if needed).

b: FINDING THE EQUIVALENT STATES
Given the path P = [s0, s1, . . . , sk ] in M , the next step is
to find the respective equivalent states in M ′ (lines 10-16).
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Algorithm 3 Adaptation (Route Equivalency)
1: function adapt(Test t , Model M , Model M ′)
2: Reboot the TV running the older version, if needed
3: P = []
4: for each cmd in t do
5: execute_cmd(cmd)
6: screen← take_screenshot()
7: s← whereAmI (screen)
8: P← append(P, s)
9: end for

10: P̃ = []
11: s̃prev← None
12: for each s in P do
13: s̃curr ← find_equivalent_state(s, s̃prev)
14: P̃← append(P̃, s̃curr )
15: s̃prev← scurr
16: end for

17: t ′← []
18: Reboot the TV running the new version, if needed
19: screen← take_screenshot()
20: s′curr ← whereAmI (M ′, screen)
21: for each s̃ in P̃ do
22: Clear all the ‘‘deleted’’ labels inM ′

23: equivalent_state_visited ← false
24: trial_cnt ← 0
25: while (not equivalent_state_visited) and (trial_cnt < MAX_ALLOWED) do
26: Let shortest_path be the shortest path from s′curr to s̃ in M

′

27: Let cmd be the first RC command to be executed in shortest_path
28: Let s′expected be the expected state to be visited after executing cmd according toM ′

29: t ′← append(t ′, cmd)
30: execute_cmd(cmd)
31: screen← take_screenshot()
32: s′prev← s′curr
33: s′curr ← whereAmI (M ′, screen)
34: if s′curr ̸= s′expected then
35: Mark the transition from s′prev to s

′
expected with the label cmd in M ′as deleted

36: end if
37: if s′curr == s̃ then
38: equivalent_state_visited ← true
39: end if
40: trial_cnt ← trial_cnt + 1
41: end while
42: if not equivalent_state_visited then
43: Mark s̃ as unvisited
44: end if
45: end for
46: return t ′

47: end function

To this end, for each state si in P, we find the equivalent state
s̃i in M ′ (line 13) and populate the list of equivalent states P̃
accordingly (line 14).

Note that the find_equivalent_state function (line 13) can
return an ordered list of multiple candidate states (i.e., the top
p candidates) for the current state of interest (Section IV-F1).
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Therefore, the search space for the adaptation process can,
indeed, be represented as a tree, where each node represents
a state s to be visited in M and its outgoing edges represent
the candidate list of equivalent states in M ′ sorted in the
reverse order by their weighted equivalency scores. Then,
the adaptation process is carried out in a depth-first fashion
where each path from the root node to a leaf node in the
tree represents a candidate sequence of equivalent states. This
enables the process to run in a backtracking manner. That is
if an equivalent state of interest cannot be visited in M ′, the
process can backtrack and exercise an alternative candidate
state. The details of this mechanism, which should be clear
by now, are not given in Algorithm 3 for a better presentation
of the algorithm. After all, we, in this work, worked with only
the top-scored (i.e., p = 1) candidate states.

c: ADAPTING THE TEST CASE
Given a sequence of equivalent states P̃ = [s̃0, s̃1, . . . , s̃k ],
the adaptation is carried out in a feedback-driven manner by
executing RC commands on the new version S ′ of the TV,
such that the equivalent states of interest in P̃ are visited in
the underlying UI model M ′. To this end, we first reboot the
TV running version S ′ (if needed) and determine the initial
state s′0 by using the WhereAmI functionality (line 20).

Then, for each state, s̃ in P̃, the minimum sequence of RC
commands, which would take the TV from its current state
s′curr to the state s̃, is determined by performing a BFS in
M ′ starting from s′curr , i.e., by using an unweighted shortest
path algorithm (line 26). Rather than executing all the RC
commands on the computed path to get to s̃, we do it in a
feedback-drivenmanner (lines 30-36). That is, after executing
the very first command cmd on the path (line 30), which
would move the TV towards s̃, we determine the resulting
UI state (lines 31-33). We do this because, in the presence
of non-determinism (Section IV-E), the TV, after executing
cmd , might have moved to a different state than the one
predicted by the UI model. Therefore, in the subsequent
iteration, a new sequence of RC commands is computed (line
26) starting from the actual current state of the UI, rather
than sticking to the original plan. The iterations end when the
target state s̃ has been reached (line 38) or amaximumnumber
of allowed RC commands have been executed without any
success, in which case the state is marked as unvisited (line
43) and the adaptation process resumes with the subsequent
state in P̃.

One observation we make is that the non-deterministic
transitions, i.e., when the system ends up in a different state
than the one predicted by the UI model (line 34), are typically
caused due to the transitions between different menus. When,
for example, there are two menus, between which one can go
back and forth by using theright andleftRC buttons, the
UI element which would be selected after using one of these
buttons, depends on the last UI element that was selected in
the target menu, regardless of the UI element selected in the
current menu, or vice versa.

One way the aforementioned non-determinism might
affect the test adaptation process is that the process could get
stuck with a non-deterministic path, which may not be exe-
cuted as predicted by the underlying UI model, starving the
adaptation process. To overcome this issue, when a transition
takes the TV to a different state than the one predicted by
the model, we temporarily marked the transition as deleted
(line 35), preventing the transition to be taken again. Note
that this strategy is well aligned with our observation that
non-deterministic transitions typically occur between differ-
ent menus. More specifically, for such a transition, the source
state and the target state are located in different menus. Even
if taking such a transition may not take the system to the
expected UI element specified in the model, it would make
the TV move the menu, in which the expected UI element
is located. Since within the same menu, we typically don’t
observe any non-deterministic behavior, the expected UI ele-
ment can be reached in a deterministic manner, even when the
respective non-deterministic transition taken between the two
menus is marked as deleted. After all, the transitions marked
as deleted will be cleared after the current target state s̃ has
been visited (line 22).

We have so far discussed the adaptation process for achiev-
ing route equivalency, achieving destination equivalency is
similar except for line 21. More specifically, rather than feed-
ing the search process with the entire sequence of equivalent
states P̃ = [s̃0, s̃1, . . . , s̃k ], we feed it with only the last state
P̃ = [s̃k ]. The rest of the algorithm operates exactly in the
same manner.

Note that, regardless of whether the route equivalency or
the destination equivalency criterion is being used, the way
we determine the sequence of equivalent states P̃ stays the
same (lines 10-16). That is, even for the destination equiv-
alency, although only the last state in P̃ will be used as
the target state to be reached, we determine the equivalent
states for all the preceding states one after another before the
equivalent state of the last state can be determined. We do
this to capture the contexts in P so that the equivalent states
(especially the one for the destination state) can reliably be
determined. Note that, in a given iteration, the state returned
from the find_equivalent_state function (line 13) depends
on where the TV is currently at in M ′ after visiting all the
preceding states inP. This ismainly due to the likelihoodmet-
ric used in the equivalency score computations (Section IV-
F1). Therefore, when we are determining the equivalent state
for the destination state we take the context (i.e., how the
destination state was reached in the original test case) into
account. Otherwise, among all the possible UI elements that
have the same look and feel as the destination state, always
the one, which is closer to a global entry state would be
selected.

V. EXPERIMENTS
To evaluate the proposed approach, we have carried out a
series of experiments.
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A. SUBJECT TVs
In these experiments, we used two different versions of a
Grundig TV as the subject TVs, namely v02.025.00 and
v04.015.00. We, in particular, picked these versions for the
study because the changes made between them were typical
of the UI changes made in TVs by Arcelik. Figures 1a and
1b present the home screen of the older and the new version,
respectively, demonstrating the changes made in this single
screen.

B. SUBJECT TEST SUITES
As a test suite to be adapted, we started with around 2000 in
test cases, which have been developed and used by Arcelik
for testing the user interfaces of their latest TVs, encoding
the decades of experience Arcelik has gained in testing TVs.
To reduce the potential biases in the analysis, we actually
utilized a subset of these test cases. More specifically, one
observation we make is that changes in the user interfaces
of the TVs tend to affect the higher-level menus, whereas
the lower-level menus mostly stay intact. This is mainly
because the lower-level menus typically correspond to the
most fundamental functionalities of the TV, which are less
likely to get changed. Therefore, to avoid any biases in the
analysis, among all the test cases that arrive at the samemenu,
which did not get changed between the versions, we randomly
picked a single test case and used it in the experiments. The
rationale was simple; once such a menu has been reached
during the adaptation, visiting any UI element in that menu
was not an issue as the menu did not get changed between the
versions. Therefore, including all the test cases ending in such
a menu can introduce a bias in the analysis as the number of
related test cases may depend on the number of available UI
elements in the menu. All told, we culled 60 real test cases
from the Arcelik test suite.

On top of these real test cases, to achieve 100% coverage of
all the menus in the TV, we also generated some random test
cases, such that each menu, which is not exercised by the real
test cases, is exercised by at least one test case. To this end,
we generated and experimented with 60 additional test cases,
each of which had between 1 and 23 RC commands, inclu-
sive. These test cases also helped us evaluate the sensitivity
of the proposed approach to the test case lengths.

C. EVALUATION FRAMEWORK
We evaluate both the effectiveness and the efficiency of
the proposed approach. More specifically, we measure the
effectiveness of an adaptation strategy in terms of its suc-
cess rate and adaptation rate, whereas the efficiency is
measured in terms of the test length overhead and runtime
overhead.

1) SUCCESS RATE
We indicate the success of an adaptation process as a boolean
value indicating whether the test case is successfully adapted

or not. Note that we evaluate the success always with respect
to the ground truth, i.e., the sequence of true equivalent states
that need to be visited for a given test case. To identify the
ground truths in the experiments, we first studied the TVs
and carried out small-scale experiments as needed. We then
validated all the ground truths with the respective testing team
at Arcelik.
Definition 3: For the route equivalency criterion, a test

case is said to be successfully adapted (or the adaptation
process for the test case is considered to be successful), if the
route equivalency criterion (Definition 1) is achieved with
respect to the ground truth.
Definition 4: For the destination equivalency criterion,

a test case is said to be successfully adapted (or the adaptation
process for the test case is considered to be successful), if the
destination equivalency criterion (Definition 2) is achieved
with respect to the ground truth.

We then define the success rate as follows:
Definition 5: Given a collection of test cases to be adapted,

success rate is the percentage of the successfully adapted test
cases.

2) ADAPTATION RATE
While the success rate quantifies the success of a test adap-
tation process as a phenomenon with a binary result, i.e.,
whether the test case has been successfully adapted or not, the
adaptation rate aims to measure the ratio of the successfully
visited states.
Definition 6: In an iteration of the adaptation process

where the goal is to visit a true equivalent state ŝ of a state
s, which is visited in the older version of the TV, s is said to
be successfully visited (or, for short, visited), if ŝ in the new
version of the TV has been reached. Otherwise, s is said to be
unvisited.
Definition 7: For the route equivalency criterion, the

adaptation rate of a test case is the percentage of the success-
fully visited states (Definition 6) during the adaptation of the
test case.

Note that the adaptation rate is computed on a per test case
basis. To get a perfect adaptation rate, for each state visited by
the test case in the older version of the TV, a true equivalent
state needs to be visited in the new version of the TV in
exactly the same relative order. However, due to the changes
in the UIs, additional states may need to be visited in between
the consecutive states, which does not affect the adaptation
rate.
Definition 8: For the destination equivalency criterion, the

adaptation rate of a test case is 100% if the destination state
(i.e., the final state) is successfully visited (Definition 6) dur-
ing the adaptation of the test case. Otherwise, the adaptation
rate is 0%.

Note that, under the destination equivalency criterion, the
average adaptation rate for a collection of test cases is the
same as the success rate obtained for the collection. There-
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fore, when appropriate, we use the two metrics interchange-
ably in the remainder of the paper.

3) TEST LENGTH OVERHEAD
While the previous two metrics measure the effectiveness of
the adaptations, one metric we use to quantify the efficiency
is the test length overhead.
Definition 9: The length of a test case is the number of RC

commands that the test case has, i.e., the length of the path
traversed by the test case in the underlying UI model.
Definition 10: The test length overhead is the percentage

of the additional RC commands used by the adaptation pro-
cess to automatically adapt a test case with respect to the true
minimum number of RC commands required for the same
task.

Note that this overhead is computed with respect to the
ground truth, rather than the number of RC commands present
in the original test case as additional commands may be
required for the adaptation.

4) RUNTIME OVERHEAD
We also quantify the efficiency in terms of the runtime over-
heads. Since the runtime overhead of the proposed approach
grows linearly with the number of RC commands present in
the test cases, we opted to measure the runtime overhead on
a per RC command basis.

We, in particular, define the following itemized runtime
overheads, each of which is measured in seconds:
Definition 11: The screenshot time is the amount of time

required for taking the screenshot of the current screen.
Definition 12: Given the screenshot of a screen, the selec-

tion detection time is the amount of time required for
detecting the selection (Section IV-B), cropping the respec-
tive regions out of the screenshot image, and forming the
ID-image of the selection (Section IV-C).
Definition 13: Given the ID-image of a selection, the

hashing time is the amount of time required to compute the
hash value for the ID-image (Section IV-C).
Definition 14: Given the hash value for a selection, the

state determination time is the amount of time required to find
the state corresponding to the selection in the underlying UI
model (Section IV-C).
Definition 15: Given the ID-image of a selection, theOCR

time is the amount of time required to recognize the text
present in the image, including the text detection as well as
the text recognition stages (Section IV-F1).
Definition 16: Given the current state in the underlying

model, the next command determination time is the amount of
time required to determine the next RC command to be exe-
cuted, including the time required for computing the shortest
path (Section IV-E).
Definition 17: Given a state in M , the equivalent state

determination time is the amount of time required to deter-
mine an equivalent state inM ′ (Section IV-F1).

Definition 18: The other overheads include the overheads
of the remaining tasks required to glue the partial results
together, including the time required to save/load the images.

D. ALTERNATIVE APPROACHES
To carry out comparative studies, we have also implemented
two alternative adaptation strategies, namely random adapta-
tion strategy and semi-random adaptation strategy.

1) RANDOM ADAPTATION STRATEGY
As the name indicates, this strategy mimics the strategies that
attempt to adapt the test cases without any prior knowledge
of the system under test. For the route equivalency criterion
under this strategy, the details of which are given in Algo-
rithm 4, a given test case is executed as it is, on the new
version of the TV one RC command after another. After
executing an RC command, which moves the older version
of the TV from its current state s to the target state starget , the
actual state of the UI in the new version is determined (lines 9-
10). If the TV turns out to be in an equivalent state of the target
state (line 11), then the target state is marked as successfully
visited (line 12) and the subsequent RC command in the test
case is executed (line 29). Otherwise (line 14), a sequence
of random interactions is carried out until an equivalent state
of the target state is reached or the maximum number of
allowed commands are executed, whichever comes first. If an
equivalent state is reached during this search process (line
11), the target state is marked as successfully visited and the
subsequent RC command in the test case is executed (line 29).
Otherwise, the adaptation process is terminated and marked
as a failure (line 23).

Note that the maximum limit on the number of random
RC commands that can be executed (i.e., MAX_ALLOWED
in Algorithm 4) is set on a per target state basis. That is,
for each target state, the equivalent state of which cannot be
visited by the original RC command, the search process is
allowed to execute up toMAX_ALLOWEDRC commands (in
our case,MAX_ALLOWED = 150). We opted to have such a
threshold because, otherwise, the experiments would need an
undetermined amount of time to finish. Note further that the
adaptation rate for the random adaptation strategy under the
route equivalency criterion is computed based on the number
of states successfully visited before the adaptation process is
terminated.

Obtaining destination equivalency with the random adap-
tation strategy is similar to obtaining route equivalency under
the same strategy (Algorithm 4), except for the part where
we check whether the equivalent states have been visited or
not. More specifically, rather than checking to see whether
an equivalent state of the target state has been visited after
executing each RC command, we do it only once for the des-
tination state after executing all the RC commands in the test
case. If the destination state has not been visited successfully,
then a sequence of random RC commands, the maximum
count of which grows linearly with the number of original
RC commands in the test case (in our case, 10 random RC
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Algorithm 4 Random Adaptation (Route Equivalency)
1: function random_adaptation(Test t)
2: Reboot the TV, if needed
3: t ′← []
4: while true do
5: Let s̃ be an equivalent state of the target state starget to be visited in the current iteration
6: equivalent_state_visited ← false
7: trial_cnt ← 0
8: do
9: screen← take_screenshot()

10: s′← WhereAmI (screen)
11: if s′ == s̃ then
12: Mark starget as successfully visited
13: equivalent_state_visited ← true
14: else
15: Let cmdrnd be a randomly chosen RC command
16: t ′← append(t ′, cmdrnd )
17: execute_cmd(cmdrnd )
18: trial_cnt = trial_cnt + 1
19: end if
20: while (not equivalent_state_visited) and (trial_cnt < MAX_ALLOWED)
21: if not equivalent_state_visited then
22: Terminate the adaptation process
23: return failure
24: end if
25: Let cmd be the next RC command to be executed in t
26: if no cmd left to be executed then
27: Break out of the outer while loop
28: end if
29: execute_cmd(cmd)
30: end while
31: return t ′

32: end function

commands per original RC command), are executed. If the
destination state is successfully visited during the search, the
adaptation process is marked as successful. Otherwise, it is
marked as a failure.

2) SEMI-RANDOM ADAPTATION STRATEGY
Semi-random adaptation strategy is designed to mimic the
adaptation strategies, which, when a UI element of inter-
est cannot be located in a given screen, can determine an
alternative UI element to be interacted with as long as the
element is in the current screen. As an example, consider a
test case, which is currently visiting a screen that it, indeed,
needs to visit. The test case is supposed to click on the Next
button in the screen, e.g., execute the RC command OK on
the Next button. However, this button has been replaced
by a Proceed button and placed at a different location on
the same screen. As the screen is currently being visited,
the UI elements appearing in the screen can be analyzed to
determine the most likely alternative to interact with (e.g., the
Proceed button), which is exactly what is being mimicked
by the semi-random adaptation strategy.

Algorithm 5 presents the details of this alternative adap-
tation strategy for the route equivalency criterion. The algo-
rithm is, indeed, similar to the one given for the random
adaptation strategy (Algorithm 4). One difference is that if an
equivalent state of the target state starget cannot be visited by
executing the original RC command, we check to see if the
target state can be reached in the current screen (i.e., if the
UI element to be interacted with is in the current screen)
(line 14). If so, we leverage the UI model automatically
discovered by AdapTV to visit the equivalent state (line 15)
by using exactly the same adaptation strategy introduced in
Section IV-F3. Note that, for evaluation purposes, this feature
is considered to be a part of the semi-random adaptation
strategy. Therefore, in these cases, the semi-random adap-
tation strategy is assumed to have successfully visited the
target state and the RC commands executed to this end are
counted towards the total number of commands executed by
the strategy. If, however, the equivalent state cannot be visited
in the current screen, then, as is the case with the random
adaptation strategy, a sequence of random RC commands
with an upper limit (in our case, MAX_ALLOWED = 30)
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Algorithm 5 Semi-Random Adaptation (Route Equivalency)
1: function semi_random_adaptation(Test t , Model M ′)
2: Reboot the TV, if needed
3: t ′← []
4: while true do
5: Let s̃ be an equivalent state of the target state starget to be visited in the current iteration
6: equivalent_state_visited ← false
7: trial_cnt ← 0
8: do
9: screen← take_screenshot()

10: s′← WhereAmI (screen)
11: if s′ == s̃ then
12: Mark starget as successfully visited
13: equivalent_state_visited ← true
14: else if s̃ can be visited in screen then
15: Navigate to visit s̃ by usingM ′

16: Populate t ′ accordingly
17: Mark starget as successfully visited
18: equivalent_state_visited ← true
19: else
20: Let cmdrnd be a randomly chosen RC command
21: t ′← append(t ′, cmdrnd )
22: execute_cmd(cmdrnd )
23: trial_cnt = trial_cnt + 1
24: end if
25: while (not equivalent_state_visited) and (trial_cnt < MAX_ALLOWED)
26: if not equivalent_state_visited then
27: Mark starget as unvisited
28: Mark the adaptation process as failure
29: Navigate to visit s̃ by usingM ′

30: end if
31: Let cmd be the next RC command to be executed in t
32: if no cmd left to be executed then
33: Break out of the outer while loop
34: end if
35: execute_cmd(cmd)
36: end while
37: return t ′

38: end function

are executed (lines 20-23). If the equivalent state is visited
during this search process (line 11), then the state is marked
as successfully visited and the subsequent RC command in
the test case is executed (line 31).

Otherwise, the target state starget is marked as unvis-
ited and the adaptation process is considered to have failed
(lines 27-28). However, to give a chance to the semi-random
strategy to work on the adaptation of the remainder of the test
case, rather than terminating the adaptation process, we use
the automatically discovered UI model to bring the system
from its current state to an equivalent state of starget , such
that the adaptation process resumes from where it was left.
Note that, since this is something we do solely for evaluation

purposes, in these cases, although the adaptation process is
considered to have failed, the adaptation rate (Section V-C2)
is computed based on the total number of successfully visited
states regardless of whether they are visited before or after
the adaptation process is marked as a failure.

The destination equivalency criterion under the semi-
random adaptation strategy works in a similar manner, except
for the part where only the equivalence state for the destina-
tion state is checked after executing all the RC commands in a
test case. If an equivalent state of the destination state has not
been visited, regardless of whether it is in the current screen
or not, we execute a sequence of randomly chosen RC com-
mands with a limit on the maximum number of commands
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that can be executed (in our case, 10 random RC commands
per original RC command). If the equivalent state is visited
during the search, then the adaptation process is considered
to be successful. Otherwise, it is marked as a failure. Note
that we don’t use the automatically discovered UI model in
the destination equivalency criterion to take the TV to the
equivalent state of interest, even if it happens to be on the
current screen because otherwise the adaptation process (as
we have only one equivalent state to visit) would be marked
as a failure right away.

E. OPERATIONAL FRAMEWORK
In the experiments, we used exactly the same setup we intro-
duced in Section II. More specifically, the programmable
remote controller Tira and the UCD device for taking screen-
shots were connected to a workstation with a 3.8 GHz
Intel(R) Core(TM) i7-10700KF CPU, 32 GB of RAM, and
NVIDIA GeForce GTX 1050 Ti graphic card running Win-
dows 11 Education version 21H2. All the screenshots were
taken in 4K resolution (3840x2160). The aforementioned
workstation was also responsible for executing the proposed
adaptation strategy as well as the alternative adaptation strate-
gies, which were all implemented entirely in Python.

Furthermore, we use the following RC commands
[right, left, up, down, OK, menu, back,
exit] both in the model discovery phase and in the adapta-
tion phase. We, in particular, chose to work with these com-
mands because these were the only commands, the behaviors
of which depended on the selection. For the rest of the com-
mands, the behaviors were agnostic of the selection. After
all, the functionalities of the remaining commands could
have been obtained by traversing the user interfaces using
the aforementioned list of commands. Moreover, we carried
out the model discovery phase with the second stopping
criterion of executing a maximum of 20000 RC commands
(Section IV-E).
Last but not least, for detecting the selections, we used

OpenCV [26] v.3.4.1 (Section IV-B). For the older version
of the TV, we defined 4 primary selectors and 2 context
detectors. And, for the new version, we defined 5 primary
selectors and 2 context detectors. For hashing the ID-images,
we used Imagehash v.4.2.0 (Section IV-C). For text detection,
we used Torch [27] v.0.4.1 and Torchvision [28] v.0.2.2. For
text recognition, we used Torchvision v.0.2.2 and NLTK [29]
v.3.5 (Section IV-F1). For equivalent state determination,
we used NLTK v.3.5 (Section IV-F1).

F. DATA AND ANALYSIS
We first automatically discovered the UI models for both
versions of the TV. The model for the older version had
763 states and 4933 edges and the one for the new version
had 894 states and 4621 edges. The discovery process for
each model took about 39 hours. Note that although the
model discovery process can be parallelized by determining

TABLE 2. Average adaptation rates.

the parts of the UI, each of which can be crawled in paral-
lel by using a different setup, such as the one exemplified
in Figure 2, we left this as a future work. After all, the
UI model for each version of the TV needs to be discov-
ered only once but used for the adaptations of all the test
cases.

We first observed that, under the route equivalency as well
as the destination equivalency criterion, while the random
and semi-random adaptation strategies failed to successfully
adapt any of the test cases (i.e., with a success rate of 0%),
the proposed approach successfully adapted all the test cases
under both criteria (i.e., with a success rate of 100%). Analyz-
ing the adaptation rates (Table 2), we then observed that, for
the route equivalency criterion, while the random adaptation
strategy was not able to successfully visit any of the states in
any of the test cases (with an adaptation rate of 0% for each
test case), the semi-random adaptation strategy successfully
visited 68.64% of the states, on average. For the destination
equivalency criterion, however, both strategies failed to visit
any of the destination states (with an adaptation rate of 0%
for each test case). The proposed approach, on the other hand,
obtained a perfect adaptation rate for each test case regardless
of the path equivalency criterion used. That is, all the states
for each test case under both the route and destination equiva-
lency criteria were successfully visited during the adaptation
processes.

Note that the random strategy was not even able to visit
the first states in the test cases. An in-depth analysis revealed
that this was because the home screen was changed between
the TV versions as presented in Figure 1a and 1b. More
specifically, the UI element Channel Search, representing
the global entry state for the older version of the TV, was
moved to a different screen in the new version. And, this
required to execute multiple RC commands to be executed
(with the shortest sequence being [up, right, right,
OK, right, right, down]) to get to this UI element
starting from the UI element Input Source, which represents
the global entry state in the new version of the TV (Figure 1b).
Note that alternative paths also existed. However, the random
adaptation strategy failed to follow any of these paths within
the given limits (Section V-D1).

We then studied the adaptation rates of the test cases
with respect to their lengths, especially for the semi-random
adaptation strategy as the other strategies either successfully
adapted all of the test cases (i.e., the model-based strategy)
or none of them (i.e., the random strategy). To this end,
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FIGURE 6. Average adaptation rates with respect to the lengths of the
test cases.

we grouped the test cases into three categories based on their
lengths, namely short, medium, and long test cases. Our
clustering criterion was based on having the same or a similar
number of test cases in each category as much as possible,
which was, indeed, not possible to fully satisfy due to the test
cases with the same lengths. Therefore, we opted to label the
test cases of length between 1 and 13 as short, between 14 and
16 as medium, and between 17 and 24 as long test cases. All
told, we had 54, 33, and 33 test cases in these three categories,
respectively.

Figure 6 presents the results we obtained. An interesting
observation we make is that as the lengths of the test cases
increased, the semi-random adaptation strategy tended to
visit more states successfully. More specifically, the average
adaptation rates obtained for the short, medium, and long
test cases were 57.63%, 74.71%, and 80.58%, respectively.
We believe that this was because, as the length of a test case
increases, the odds of visiting someUI elements in the screens
that have not been changed in between the versions, increase.
This observation is also well aligned with our conjecture that
the changes in the menu hierarchy typically occur at higher
levels of the hierarchy as the lower levels often correspond to
the UI elements regarding the fundamental functionalities of
the TV, which are typically less likely to get changed.

We next analyzed the test length overheads. Table 3
presents the results we obtained. The columns in this table
represent the path equivalency criterion and the test adapta-
tion strategy being used together with the average length of
the adapted test cases and the respective test length overhead,
on average, respectively. Note that as the random adaptation
strategy did not have a chance to work on all of the states
visited by the original test case, we opted not to report the
results for this strategy as it would be misleading.

The average lengths of the adapted test cases generated by
the proposed approach and the semi-random strategy were
48.51 and 155.67, respectively, for the route equivalency
criterion and 12.31 and 148.85 for the destination equiva-
lency criterion (Table 3). With these lengths, under the route

equivalency criterion, the average test length overheads were
13.39% and 281.06% for the proposed approach and the
semi-random strategy, respectively, and, under the destination
equivalency criterion, the overheads were 2.12% and 1108
(Table 3).

For the proposed approach, the test length overheads
for the destination equivalency criterion were smaller than
those for the route equivalency criterion; an average test
length overhead of 2.12% vs. 13.39% (Table 3). This
was mainly due to the fact that the proposed approach
was able to find shorter paths to visit the destination
states in the new version of the TV, compared to the
paths that need to be followed under the route equivalency
criterion.

Analyzing the runtime overheads, which are itemized in
Table 4, we observed that the average overheads per RC
command were 3.30 and 3.71 seconds in the model discovery
and adaptation phases, respectively. Note that all the opera-
tions in Table 4, except for the equivalent state determination
operation, which is specific to the adaptation phase, are car-
ried out both in the model discovery and adaptation phases.
Note further that, on top of these overheads introduced by the
proposed approach, there is a runtime cost of 1.77 seconds
for executing an RC command using Tira and 2 seconds for
waiting in between the consecutive RC commands, which are
common between the proposed approach and the original test
suite developed by Arcelik.

Wefirst observed that a substantial portion of the overheads
was due to taking the screenshots. More specifically, 58.48%
and 52.02% of all the overheads in the model discovery and
adaptation phases, respectively, were attributed to this task.
Note that we solely rely on the UCD device to take the
screenshots (Section V-E). Therefore, improvements on these
(and similar) devices can profoundly help reduce the runtime
overheads of the proposed approach.

We then observed that the next most time-taking operation
with an average of 0.66 seconds was to determine the sub-
sequent RC command to execute. This overhead was mostly
due to the BFS traversal of the underlyingUImodel to find the
shortest path from the current state to the target state, so that
the next command to execute can be determined. Indeed, the
computational complexity of this step is O(|V | + |E|) where
|V | and |E| are the number of vertices and edges in the UI
model, i.e., the running time grows linearly with the size of
the UI model.

Last but not least, we observed that OCR took an accept-
able amount of time, i.e., 0.13 seconds, on average. This was
because we apply OCR only to the cropped images of the
selected UI elements, which correspond to a small portion of
the entire screen.

VI. THREATS TO VALIDITY
One external threat to study is that we use the TVs produced
by a single company, namely Arcelik. However, as Arcelik is
one of the largest home appliances manufacturers in Europe
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TABLE 3. Average test length overheads.

TABLE 4. Amount of time (in seconds) taken by different operations on a per RC command basis.

operating in 100 different countries under 10 different brand
names, including Beko and Grundig, we believe that the
subject TVs used in the experiments share many common
characteristics with the TVs produced by other companies.
After all, we have not used any special features provided by
the subject TVs in the experiments.

A related threat concerns the representativeness of the test
cases used in the experiments. However, half of the test cases
were culled from a real test suite, which has been used by
Arcelik for testing their latest TVs, encapsulating the decades
of experience Arcelik has gained in testing TVs. Furthermore,
the UI changes between the versions of the TV used in the
experiments were confined to the higher levels of the menu
hierarchy and the lower-level menus mostly stayed intact.
Based on our experience, this, however, is typical of the
changesmade in the user interfaces of TVs. As the lower-level
menus often correspond to the fundamental functionalities of
the TV, they are less likely to get changed between versions.
To account for this, thus to avoid any biases in the analysis,
we, indeed, selected a subset of the aforementioned test suite
by eliminating the redundancies (Section V-B). Furthermore,
the other half of the test cases used in the experiments were
randomly generated to increase the diversity in the test suite,
i.e., to exercise the menus that are not exercised by the
real test cases. Indeed, the test cases used in the experi-
ments achieved 100% coverage of the menus; there was at
least one test case visiting a UI element in each menu on
the TV.

Another potential threat is that we manually defined the
ground truths in the experiments, i.e., the sequences of true
equivalent states that need to be visited for the adaptations
of the test cases. To this end, however, we studied the TV
interfaces and carried out small-scale experiments as needed.
After all, we validated the ground truths with the respective
testing team at Arcelik.

Furthermore, all of the test cases in the experiments were
executed on screens with a black background. This was,

indeed, the expected behavior of the subject TVs. That is,
all the menus were displayed with a black background. This,
however, may not be the case for other TVs, i.e., menus
can be displayed with complex backgrounds, such as with
a background image or with a video (broadcast) playing in
the background. On the other hand, the contents visualized
in the backgrounds can generally be controlled in testing.
Therefore, an appropriate background (such as a solid back-
ground) can be chosen for testing the user interfaces. If testing
with a more complex background is required, one could
filter out the previously known background content from the
screenshots. Or, a filteringmechanism based on the opacity of
the pixels can be applied as when a TVmenu is superimposed
on a complex background, the opacity of the background is
typically reduced.

Our equivalent state determination approach leverages
only the textual information present in the UI elements. If a
UI element does not have any text associated with it, then an
equivalent state may not be determined. One liable solution is
to employ image-based icon classification and use the class
labels together with any text associated with these labels in
the proposed approach, which we leave as future work. After
all, we observe that these cases are rare in the TV domain
and image classification is a well-defined and well-studied
problem [30].

The screenshot images, especially the ones taken from
outside the TV with the use of an external camera, may
contain noise. To reduce the noise to the extent possible and to
avoid all the issues associated with calibrating the cameras,
we used a UCD device in the experiments. However, some
noise, which is typically not seen by a naked eye, may still
be inevitable. To this end, two hyper-parameters that the
proposed approach offers are the size of the hash values to
be used with the LSH hashing function and the cutoff value
used for determining the equivalency relation between the
hash values, both of which can be configured to take the noise
into account (Section IV-C).
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In our study, we employed Tira and UCD devices to con-
duct the experiments and evaluate the proposed approach.
However, these devices may have some unknown defects.
It is, on the other hand, crucial to acknowledge that these
two devices are widely used for testing smart TVs at Arcelik.
Nonetheless, we have not come across any reported errors
by the manufacturers or users of these devices. Furthermore,
we conducted a series of preliminary studies to ensure that
they are functioning correctly and not affecting the proposed
approach.

Furthermore, we only experimented with the English lan-
guage when carrying out the text detection and extraction
operations as well as computing the semantic similarities
between texts (Section IV-F1). However, pre-trained models,
such as the ones we used for English, also exist for other
languages. The performance of these models may, however,
vary depending on the language.

VII. RELATED WORK
The literature for consumer electronics, model-based quality
assurance, test adaptation, user interface testing, and smart
TVs has a long history with many significant contributions.
In this section, we provide an overview of the related litera-
ture and discuss how our work relates to and/or differs from
the existing works.

A. CONSUMER ELECTRONICS
Previous research on consumer electronics has studied vari-
ous aspects of these devices, including their design, imple-
mentation, and testing. For instance, Lin et al. study the
user-centered design approaches and the importance of con-
sidering the user experience throughout the entire design
process [31]. Ommering et al. discuss the implementation
of consumer electronics while highlighting the role of hard-
ware and software in the development [32]. Kumar et al.
explore different testing approaches for ensuring the quality
and reliability of consumer electronics [33]. Other related
studies, especially the ones focusing on IoT devices, also
exist [34], [35], [36]. We, in particular, contextualize our
work within the broader research landscape on consumer
electronics.

B. MODEL-BASED QUALITY ASSURANCE APPROACHES
Model-based quality assurance (MQA) approaches have been
extensively studied in the literature for various QA-related
tasks, including test case generation [37], [38], fault detec-
tion [39], and fault localization [40]. Neto et al. survey the
MQA approaches for generating test cases in a systematic
review work [37]. Garousi et al. empirically study the effec-
tiveness and efficiency of model-based testing in an industrial
setup and demonstrate that it leads to improved test coverage
and effective fault detection for web and mobile applica-
tions [39]. Yilmaz and Williams introduce a model-based
fault localization approach to reduce the space of potential

root causes for failures, which operates by mimicking the
common mistakes made by developers in the form of model
mutations [40]. Compared to these works, our work differs
in that we present a model-based approach for automatic test
case adaptation.

C. TEST ADAPTATION
The topic of test adaptation has been studied mostly in the
context of web and mobile applications. Existing test adap-
tation approaches often utilize the object models, such as
the DOM and POM models, to extract information from
the screens. Imtiaz et al. propose an approach that uses the
differences between the DOM models obtained from two
different versions of the same web application to classify the
test cases as reusable, re-testable, and obsolete, with the goal
of adapting them accordingly [8]. Hammoudi et al. study the
reasons for test breakage in the test scripts created for web
applications by using record-and-replay tools [6]. Imtiaz et al.
survey the literature for test repair approaches [5]. In addition
to the DOM- and POM-based approaches, other adaptation
approaches have also been studied, which utilize visual rather
than structural information [41], [42]. Stocco et al. carry
out an empirical analysis comparing DOM-based and visual
approaches [42]. Memon and Soffa present a test repair
approach for desktop programs, modeling the programs using
GUI Control FlowGraphs (G-CFG) andGUI Call Graphs (G-
call) [43]. Model-based approaches have, indeed, also been
used for test adaptation, but only in the context of web and
mobile applications. For example, Imtiaz et al. propose a
model-based approach for repairing test cases for evolving
web applications [8]. Chen et al. present another model-based
approach for automatically identifying and repairing broken
test cases for web applications [11].

Our work differs from these works in that, while the
existing approaches address the web and mobile platforms,
we present a model-based adaptation approach for testing
smart TVs. And, from the perspective of test adaptation, smart
TV platforms are quite different than theweb andmobile plat-
forms. One difference is that, unlike the web and mobile plat-
forms, smart TVs do not necessarily provide object models,
such as the POMandDOMmodels, which report many useful
attributes for the UI elements present on the screens, includ-
ing their types, locations, and labels. Therefore, our approach
operates by interpreting the screen images. Another differ-
ence is that going from one UI element to another element
even on the very same screen on the TV typically requires a
sequence of well-planned actions to be taken, e.g., a sequence
of arrow buttons on the RC may need to be pressed. To this
end, we leverage the automatically discovered UI models in
the proposed approach. In the web and mobile platforms,
on the other hand, the UI elements can directly be inter-
acted with either by using the references provided by the
DOM and POMmodels or by directly clicking/tapping on the
elements.
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D. USER INTERFACE TESTING
Banerjee et al. report over 230 publications on UI testing
of web applications published between 1991 and 2013 [44],
demonstrating that the UI testing of web applications has
been extensively studied for nearly three decades, result-
ing in the development of many sophisticated algorithms,
methods, techniques, and tools. Similarly, the UI testing of
mobile applications has also been the subject of numerous
studies [45], [46], [47], [48]. Although testing web and
mobile applications share many common properties, they
are also slightly different from each other due to the way
the end-users interact with these applications as well as the
computing power provided by the underlying platforms. For
example, Amalfitano et al. present MobiGUITAR [49] – an
approach for UI testing of mobile applications, inspired by
GUITAR [50] – an approach for UI testing of web applica-
tions. Our work is different in that we present a non-intrusive
approach for testing UIs of smart TVs, which poses its own
challenges as discussed above.

E. TESTING SMART TVs
Compared to the web and mobile platforms, the testing of
smart TVs has so far received less research attention. Ahmed
and Bures identify some of the challenges and outline the key
components in testing smart TV applications [51]. Cui et al.
propose a model-based approach for testing smart TV appli-
cations using a Hierarchical State Transition Matrix [52].
Bures et al. develop a model-based UI analysis approach
to improve the usability, accessibility, and quality of smart
TV applications by detecting possible design flaws in the
UIs [53]. Ahmed and Bures present an automated model
discovery tool for smart TV applications [54]. However,
they use a TV emulator (rather than an actual TV) in the
discovery process. Therefore, it is not clear whether some
emulator-specific features are used or not. Furthermore, the
models are discoveredwithout any particular application (i.e.,
usage scenario for themodels) inmind.We, on the other hand,
interact with a physical TV for discovering the UI models,
which are specifically designed to be used for test adaptation.
Later, Ahmed et al. [55] propose a model-based approach for
testing smart TVs that aims to generate effective test cases for
fault detection.

The existing works on testing smart TVs, largely focus on
general testing problems, rather than specifically addressing
the problem of test adaptation. To the best of our knowledge,
we are the first to address this problem in the domain of
smart TVs.

VIII. CONCLUDING REMARKS AND FUTURE WORK
In this paper, we have introduced a feedback-driven model-
based test adaptation approach for testing the user interfaces
of smart TVs. From the perspective of the TV software, the
proposed approach is a non-intrusive and completely black-
box approach, which operates by interpreting the images on
the TV screen. Given a test suite, which is known to work on

an older version of the TV, we first automatically discover a
UI model for both the older version and the new version of the
TV, by opportunistically crawling the user interfaces. Then,
for each test case in the test suite, we execute it on the older
version and determine the path traversed in the respective
UI model. Finally, we determine a semantically equivalent
path in the UI model discovered for the new version and
dynamically execute the selected path in a feedback-driven
manner on the new version. The rationale behind having a
model-based adaptation approach is to avoid the guesswork
as much as possible, which typically occurs when the TV
ends up in an unexpected state during the adaptation process.
To this end, the proposed approach uses the automatically
discovered model to take the TV from its current state to a
state of interest.

We have empirically evaluated the proposed approach by
using both real test cases, which were developed by Arcelik,
and additional test cases, which were automatically generated
to improve the diversity. All the experiments were carried out
in a setup, which closely mimics the industrial setup used by
Arcelik for testing.While the proposed approach successfully
adapted all the test cases, the alternative approaches used in
the experiments could not adapt any of them.

We believe that this line of research is quite promising.
Therefore, we continue to work in this field. One potential
avenue for future research is to augment our equivalent state
determination approach with image-based icon classification.
Another avenue is to apply the proposed approach to other
consumer electronics that come with a screen-based user
interface, such as washing machines and refrigerators. Yet
another promising area is to use the same/similar approaches
to migrate the test cases that are written for a specific device
to other devices operating in the same domain.
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