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ABSTRACT
We present Tarski, a tool for specifying configurable trace semantics
to facilitate automated reasoning about traces. Software develop-
ment projects require that various types of traces be modeled be-
tween and within development artifacts. For any given artifact (e.g.,
requirements, architecture models and source code), Tarski allows
the user to specify new trace types and their configurable semantics,
while, using the semantics, it automatically infers new traces based
on existing traces provided by the user, and checks the consistency
of traces. It has been evaluated on three industrial case studies in
the automotive domain (https://modelwriter.github.io/Tarski/).
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1 INTRODUCTION
The complexity of software systems in safety critical domains (e.g.
avionics and automotive) has significantly increased over the years.
Development of such systems requires various phases which re-
sult in several artifacts (e.g., requirements documents, architecture
models and test cases). In this context, traceability [29, 32] not only

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5105-8/17/09. . . $15.00
https://doi.org/10.1145/3106237.3122825

establishes and maintains consistency between these artifacts but
also helps guarantee that each requirement is fulfilled by the source
code and test cases properly cover all requirements, a very impor-
tant objective in safety critical systems and the standards they need
to comply with [25, 30]. As a result, the engineers have to establish
and maintain several types of traces, having different semantics,
between and within various development artifacts.

We present a tool, Tarski1, which supports specifying config-
urable trace semantics to facilitate multiple forms of automated
trace reasoning. Tarski is developed for environments, requiring
maintenance of various artifacts, within the context of our re-
search [13, 14] in collaboration with Ford-Otosan [15], Airbus [1]
and Havelsan [24]. The motivation behind Tarski is to provide a
way to interactively specify trace types and semantics, which vary
for different artifacts, to be used in automated trace reasoning.

There are approaches and tools [2, 16, 17, 21, 22] that use a
predetermined set of possible trace types and their semantics for
automated reasoning. However, in the case of dealing with com-
plex software systems, instead of a one-size-fits-all approach, it
is required to enable the adoption of several trace types and their
semantics, and herewith the various forms of automated reasoning
about traces. To do so, Tarski provides the following features: (i)
specifying trace semantics which can be configured due to project
and artifact types, (ii) deducing new traces based on the given
trace semantics and on the traces which the engineer has already
specified, and (iii) identifying the traces whose existence causes a
contradiction according to the trace semantics. The tool provides a
traceability domain model which describes the basic concepts of
traceability such as Trace-link and Trace-location. The notion of
trace-location refers to traceable elements in an artifact, while the
notion of trace-link refers to traces between trace-locations. The
user defines new trace types by extending Trace-link and Trace-
location. The user specifies the semantics of new trace types in a
restricted form of Alloy [26], i.e., First-Order Logic (FOL) augmented
with the operators of the relational calculus [33]. We employ Kod-
kod [35, 36], an efficient SAT-based constraint solver for FOL with
relational algebra and partial models, for automated trace reasoning
using the trace semantics. Our tool is integrated with Eclipse [8]
platform.

In the remaining sections, we outline Tarski’s features and com-
ponents.We highlight the findings from our evaluation of Tarski over
multiple industrial case studies with one of our industrial partners.

1The name is inspired by Alfred Tarski’s foundational work on the relational calculus

959

https://modelwriter.github.io/Tarski/
https://doi.org/10.1145/3106237.3122825
https://doi.org/10.1145/3106237.3122825
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3106237.3122825&domain=pdf&date_stamp=2017-08-21


ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany F. Erata, A. Goknil, B. Tekinerdogan and G. Kardas

2 RELATEDWORK
Several approaches and tools have been proposed for automated
trace reasoning using the trace semantics [2, 6, 7, 9–11, 16, 18–
22, 27, 28, 31, 34]. These approaches employ a predefined set of
trace types and their corresponding semantics. For instance, Goknil
et al. [22] provide a tool for inferencing and consistency checking of
traces between requirements using a set of trace types (e.g., refines,
requires, and contains) and their formal semantics. Similarly, Egyed
and Grünbacher [11] propose a trace generation approach. They do
not allow the user to introduce new trace types and their semantics
for automated reasoning. In the development of complex systems,
it is required to enable the adoption of various trace types, and
herewith automated reasoning using their semantics.

Tarski does not encode any predefined trace type or semantics.
It allows the user to interactively define new trace types with their
semantics to be used in automated reasoning about traces. Using
the semantics specified by the user, Tarski deduces new traces and
checks the consistency of traces.

3 TOOL OVERVIEW
Tarski is the tool supporting our approach for automated reasoning
about traces based on configurable trace semantics, recently de-
scribed in [12]. Fig. 1 presents an overview of our tool. In Step 1, the
user specifies new trace types and their semantics in First-Order
Logic (FOL) augmented with the operators of the relational calcu-
lus [33]. To do so, Tarski employs a restricted form of Alloy [26]
with a custom text editor. New trace types are defined by extending
Trace-link and Trace-location in Traceability Domain Model.

User

Trace Types 
and Semantics 

Specify Project-Specific 
Trace Types and Semantics

¨

Is there any 
other trace type?

NoYes Assign Traces 
between and within 
the Project Artifacts 

≠
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Figure 1: Tool Overview
Once the user specifies the trace types and their semantics,

Tarski allows the user to assign traces between and within the
input project artifacts (e.g., requirements specifications, architec-
ture models, and test cases) using the trace types (Step 2). After
the traces are manually assigned, the tool proceeds to Step 3 with
automated trace reasoning. In the rest of the section, we elaborate
each step in Fig. 1 using the Electronically Controlled Air Suspen-
sion (ECAS) System of Ford-Otosan [15], a safety-critical system in
automotive domain, as a case study.

3.1 Specification of Trace Types and Semantics
As the first step, for the artifacts, the user specifies trace types
and their semantics in FOL using a restricted form of Alloy. First,
the user extends the traceability domain model with new trace and
artifact types. Fig. 2 shows part of the extended traceability domain
model for the ECAS case study.

0..*

...

...

Figure 2: Traceability Model with User-defined Trace Types

We extend Trace-link in Fig. 2 with new trace types (e.g., contains,
refines, and satisfies), while Text-location is extended with new types
of elements of the artifacts to be traced in the case study (e.g.,
Requirement, HighLevelReq, and Code). Fig. 3 shows some of the
extensions of Trace-link and Trace-location in Fig. 2.

In the following, we briefly explain the restricted Alloy notation
Tarski employs for declaring trace types and their semantics. Sig-
natures define the vocabulary of a model in Alloy (see keyword
sig in Fig. 3). We use them to extend Trace-location for declaring
artifact element types (see Lines 4, 9, 12, 15, 17, 21 and 24 in Fig. 3).
Tarski employs some special annotations to specify artifacts’ loca-
tion types (Lines 8, 11, 14, 20 and 23). The location type information
is later used by Tarski to create the Eclipse workspace fields to save
traces assigned in Step 2 in Fig. 1 (see Section 3.2). For instance, Re-
quirement is given as a text location in Line 11 (see Requirement and
Text-location in Fig. 2), while Code is given as a source code location
in Line 20. For a trace between a textual requirement and a code
fragment, using the location information in Fig. 3, Tarski creates a
resource field as a path referring to the location of the requirement,
while the resource, offset, and length fields are created to refer to
the code fragment where resource gives the path of the source code
file, offset gives the start index of the code fragment in the code file,
and length gives the length of the code fragment.

Figure 3: Some Example Trace Types in Tarski

960



A Tool for Automated Reasoning about Traces Based on
Configurable Formal Semantics ESEC/FSE’17, September 4–8, 2017, Paderborn, Germany

New trace types are defined as binary relations in the signature
fields (see Lines 5, 6, 12, and 18 in Fig. 3). Tarski automatically ex-
tends Trace-link for those binary relations (see Fig. 2). For instance,
in Line 18, Satisfies is declared as a new trace type between Im-
plementation and Requirement. Trace semantics is given as facts in
Alloy (see Fig. 4). Facts are constraints that are assumed to always
hold. They are used as axioms in constructing examples and coun-
terexamples [26]. The Refines, Requires and Contains trace types are
defined irreflexive and antisymmetric (see Lines 26 and 27 in Fig. 4).
In addition, Contains is injective (Line 25).

Figure 4: Example Trace Semantics in Tarski
As part of the semantics, we define how trace types are related to

each other (Lines 30-49). For instance, according to the fact in Lines
30-33 where a, b and c are artifact elements, if a refines, requires or
contains b, while b conflicts with c, then a also conflicts with c.

3.2 Trace Assignment in Project Artifacts
Tarski guides the user in assigning traces between and within the
input artifacts (see Step 2 in Fig. 1). The user manually assigns traces
for the input artifacts using the trace types. The main challenge is
that the traceable parts of textual artifacts (e.g., requirements in a
requirements specification) need to be determined before assign-
ing traces. To address this challenge, Tarski employs a semantic
parsing approach [23] that automatically maps natural language to
Description Logic (DL) axioms. The mappings between the natural
text and the DL axioms are used by Tarski to automatically iden-
tify the traceable parts of textual artifacts. Fig. 5 shows part of the
ECAS requirements specification after semantic parsing in Tarski.

Figure 5: Part of the ECAS Requirements Specification
The blue colour indicates the traceable parts of the ECAS re-

quirements specification which do not yet have any trace. When

the user wants to assign a trace from/to these blue coloured parts,
Tarski automatically suggests the possible trace types using the
type hierarchy encoded in Step 1 (see Fig. 3). After the trace is as-
signed, the blue colour automatically becomes red, which indicates
having at least one trace.

3.3 Automated Reasoning about Traces
Inferencing and consistency checking aim at deriving new traces
based on given traces and determining contradictions among traces.
These two activities enrich the set of traces in the artifacts. They
are processed in parallel because the consistency checking uses
the machinery for inferencing and also checks the inconsistencies
among inferred traces as well as among given traces.
Table 1: Some Requirements and Code Fragments in ECAS

Nr. Requirements/Code Fragments

r11 The system shall do height corrections using long and
short term filtered height sensor signal.

r59 The system shall always use height sensors in the range
of 0-5V to avoid long term signal filtering.

r60 The system shall do height corrections using long and
short term filtered height sensor signal with 10ms interval.

r97 The system shall filter height sensor signal in short term
and long term for height corrections.

r98 The system shall filter height sensor signal in long term
for height corrections.

i14 vehicle::ecas::processHeightSensor::filterSignal
i72 vehicle::ecas::processHeightSensor

3.3.1 Inferring New Traces. Tarski takes the artifacts and their
manually assigned traces as input, and automatically deduces, using
the user-defined trace types and their semantics, new traces as out-
put. Fig. 6 gives the assigned and inferred traces for some simplified
ECAS requirements and source code fragments in Table 1.
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Figure 6: Example Inferred and Inconsistent Traces in ECAS
The solid arrows represent the manually assigned traces, while

the dashed arrows are the traces automatically inferred by Tarski.
For instance, the user assigns the refines traces between i72 and
i14, and between r60 and r11. Using the trace semantics in Fig. 4,
Tarski automatically infers two satisfies traces, two requires traces
and one conflicts trace in Fig. 6. For instance, i14 satisfies r11 (i.e.,
inferred) because it satisfies r60 which refines r11 (see the fact in
Lines 36-40 in Fig. 4). The conflicts trace between r60 and r59 is
inferred because r60 requires r98 which conflicts with r59 (see the
fact in Lines 30-33 in Fig. 4). Please note that the requires trace
between r60 and r98 is inferred.
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3.3.2 Checking Consistency of Traces. Tarski takes the artifacts
and their given and inferred traces as input, and automatically de-
termines, using the user-defined trace types and their semantics,
the inconsistent traces as output. Tarski provides an explanation
of inconsistent traces by giving all the manually assigned traces
causing the inconsistency. In Fig. 6, the requires and conflicts traces
between r60 and r59 are inconsistent (or contradict each other) be-
cause a requirement cannot require another requirement which it
conflicts with (see the fact in Lines 48-49 in Fig. 4). The inconsistent
conflicts trace is inferred using two other inferred traces. First, r60
requires r97 (i.e., inferred) because r60 refines r11 which requires r97.
Second, r60 requires r98 (i.e., inferred) because r60 requires r97 which
contains r98. And lastly, r60 conflicts with r59 (i.e., inferred and in-
consistent with the requires trace) because r60 requires r98 which
conflicts with r59. Therefore, the manually assigned refines trace
between r60 and r11, requires trace between r11 and r97, contains
trace between r97 and r98, conflicts trace between r98 and r59, and
requires trace between r60 and r59 actually cause the inconsistency
in Fig. 6. When we, together with the Ford-Otosan engineers, an-
alyzed all these assigned traces, we identified that the manually
assigned requires trace between r60 and r59 is invalid. We removed
it to resolve the inconsistency.

4 EVALUATION
Our goal was to assess, in an industrial context, the feasibility of
using Tarski to facilitate automated trace reasoning using user-
defined trace types and semantics. For this assessment, we selected
three industrial case studies which are subsystems of the ECAS
system developed by different teams at Ford-Otosan [15]. They are
relatively mid-sized systems with multiple artifacts (e.g., require-
ment specifications, SysML models, Simulink models, test suites
and C code) requiring various trace types (see Table 2).

Before conducting the case studies, the Ford-Otosan engineers
were given presentations illustrating the Tarski steps and a tool
demo. The engineers held various roles (e.g., senior software en-
gineer and system engineer) and all had substantial experience in
software development. For each case study, we asked the engineers
to identify trace types and assisted them in specifying trace types
and their semantics in Tarski (the 1st and 2nd columns in Table 2).
The artifacts in each case study had already some typeless traces
(i.e., trace to/from) manually assigned by the engineers. We asked
them to reassign those traces using the trace types they specified
using Tarski (the 3rd and 4th columns).
Table 2: Number of Trace Types, Facts, Assigned & Inferred
Traces, and Inconsistent Parts in the Case Studies

Trace
Types

Facts Traced
Elements

Manual
Traces

Inferred
Traces

Inconsis.
Parts

#1 7 11 125 138 502 3
#2 11 20 47 102 145 5
#3 10 14 16 21 53 1

To evaluate the output of Tarski, we had semi-structured inter-
views with the engineers. All the inferred traces and the found in-
consistencies in the case studies were confirmed by the engineers to
be correct (the 5th and 6th columns). The engineers considered the
automated generation of new traces and the consistency checking

of traces to be highly valuable. The restricted Alloy Tarski employs
was sufficient to specify all the trace types and their semantics for
the case studies. The engineers agreed about the useful guidance
provided by Tarski for specifying trace types and semantics. They
stated that it was intuitive to specify trace types and semantics
using Tarski although more practice and training were still needed
to become familiar with the tool.

5 IMPLEMENTATION & AVAILABILITY
Tarski has been implemented as an Eclipse plug-in. This plug-in
activates the user interfaces of Tarski and provides the features
specifying trace types and their semantics, assigning traces in the
artifacts using user-defined trace types, and reasoning about traces
(i.e., deducing new traces and checking consistency of traces). We
use Kodkod [35, 36], an efficient SAT-based finite model finder for
relational logic, to perform automated trace reasoning using the
user-defined semantics. Trace types and their semantics are speci-
fied in the restricted form of Alloy, while the artifacts containing
manually assigned traces are automatically transformed into Alloy
specifications. Using the trace semantics and the artifacts in Alloy,
we directly call KodKod API [5] to reason about traces.

Tarski relies upon (i) a customized Eclipse editor to specify trace
types and their semantics in FOL, (ii) another customized Eclipse
editor to assign traces between and within the artifacts (including
textual artifacts such as requirements specifications) using user-
defined trace types, and (iii) alloy4graph [3] and alloy4viz [4], the
Alloy API packages for performing graph layout and displaying Al-
loy instances, to visualize the output of automated trace reasoning.

Tarski is approximately 50K lines of code, excluding comments
and third-party libraries. Additional details about Tarski, including
executable files and a screencast covering motivations, are available
on the tool’s website at:

https://modelwriter.github.io/Tarski/

6 CONCLUSION
We presented a tool, Tarski, to allow the user to specify configurable
trace semantics for various forms of automated trace reasoning such
as inferencing and consistency checking. The key characteristics
of our tool are (1) allowing the user to define new trace types and
their semantics which can be later configured, (2) deducing new
traces based on the traces which the user has already specified,
and (3) identifying traces whose existence causes a contradiction.
Tarski has been evaluated over three industrial case studies. The
evaluation shows that our tool is practical and beneficial in in-
dustrial settings to specify trace semantics for automated trace
reasoning. We plan to conduct more case studies to better evaluate
the practical utility and usability of the tool.
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