
Learning Randomized Reductions and Program Properties

FERHAT ERATA, Yale University, USA
ORR PARADISE, UC Berkeley, USA
TIMOS ANTONOPOULOS, Yale University, USA
THANHVU NGUYEN, George Mason University, USA
SHAFI GOLDWASSER, UC Berkeley, USA
RUZICA PISKAC, Yale University, USA

The correctness of computations remains a significant challenge in computer science, with traditional ap-
proaches relying on automated testing or formal verification. Self-testing/correcting programs introduce an
alternative paradigm, allowing a program to verify and correct its own outputs via randomized reductions,
a concept that previously required manual derivation. In this paper, we present Bitween, a method and
tool for automated learning of randomized (self)-reductions and program properties in numerical programs.
Bitween combines symbolic analysis and machine learning, with a surprising finding: polynomial-time linear
regression, a basic optimization method, is not only sufficient but also highly effective for deriving complex
randomized self-reductions and program invariants, often outperforming sophisticated mixed-integer linear
programming solvers. We establish a theoretical framework for learning these reductions and introduce
RSR-Bench, a benchmark suite for evaluating Bitween’s capabilities on scientific and machine learning
functions. Our empirical results show that Bitween surpasses state-of-the-art tools in scalability, stability,
and sample efficiency when evaluated on nonlinear invariant benchmarks like NLA-DigBench. Bitween is
open-source as a Python package and accessible via a web interface that supports C language programs.

CCS Concepts: • Software and its engineering→ Dynamic analysis; Correctness; Software reliability;
• Computing methodologies → Supervised learning by regression; • Mathematics of computing →
Nonlinear equations.

Additional Key Words and Phrases: randomized self-reductions, loop invariants, learning, random self-
reducibility, linear regression, self-correctness

1 INTRODUCTION

The correctness of computations remains a fundamental challenge in computer science. Currently,
there are two major approaches to this problem. The first is the classical approach based on
automated testing [Claessen and Hughes 2000; Miller and Spooner 1976], that seeks to detect errors
by running a program against a diverse set of input scenarios and program properties. The second
approach, formal verification [Clarke and Emerson 2008; Hoare 1969], employs mathematical
methods to rigorously prove program properties. An alternative paradigm was introduced by Blum
et al. [1993], who developed a formal theory of programs that “test and correct themselves” (a
notion similar to self-correctors was independently proposed by Lipton [1991]). Self-testing and
self-correcting allow one to use a program Π to compute a function 𝑓 without trusting that Π
works correctly for all inputs. The computed function 𝑓 can be seen as a formal mathematical
specification of what the program Π should compute. Two key components of this formalism are: a
self-tester and a self-corrector. A self-tester for 𝑓 estimates the fraction of values of 𝑥 for which
indeed it holds Π(𝑥) = 𝑓 (𝑥). A self-corrector for 𝑓 takes a program that is correct on most inputs
and turns it into a program that is correct on every input with high probability. Both self-testers
and self-correctors have only black-box access to Π and, importantly, do not directly compute 𝑓 .
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2 Erata et al.

Self-correctors exist for any function that is randomly self-reducible [Blum et al. 1993]. Informally,
when a function 𝑓 has a randomized self-reduction (RSR) then there is a way to recover the value
of 𝑓 at a given point 𝑥 by computing 𝑓 on random correlated points. For example, we can always
recover the value of the function 𝑓𝑐 (𝑥) = 𝑐 ·𝑥 by evaluating 𝑓𝑐 on 𝑥−𝑟 and 𝑟 , for any value 𝑟 , and
adding the results: 𝑓𝑐 (𝑥) = 𝑓𝑐 (𝑥−𝑟 ) + 𝑓𝑐 (𝑥). This equation is an RSR for the function 𝑓𝑐 . In the
context of self-correctors, merely evaluating Π on the given 𝑥 is not enough, since the program is
known to be correct on most inputs, not all. Self-correctness establishes that the correct value of
the function at any particular input 𝑥 can be inferred, even though the program may be incorrect
on input 𝑥 .
Random self-reducibility has been used in several other areas of computer science, including

cryptography protocols [Blum and Micali 2019; Goldwasser and Micali 2019], average-case com-
plexity [Feigenbaum and Fortnow 1993], instance hiding schemes [Abadi et al. 1987; Beaver and
Feigenbaum 1990; Beaver et al. 1991], result checkers [Blum et al. 1993; Lund et al. 1992] and
interactive proof systems [Blum and Kannan 1995; Goldwasser et al. 2019; Lund et al. 1992; Shamir
1992].

Despite their importance and various applications, finding reductions automatically has been a
longstanding challenge. In their work on automatic (gadget-based) reduction finding, Trevisan et al.
[2000] describe generating such properties as “...[it] has always been a ‘black art’ with no general
methods of construction known”. In their seminal papers, Blum et al. [1993], and later Rubinfeld
[1999] manually derived randomized reductions through thorough mathematical analysis. We
address this challenge and in this paper we present a technique and a tool, called Bitween, which
is the first tool for automatically generating self-reductions.

Our tool collects samples by executing the program on a number of randomly chosen values, and
then utilizes simple yet powerful machine learning regression techniques, to iteratively converge
towards possible self-reductions. At each round, it leverages various measures to eliminate some of
the candidates and reduce the dimensions of the problem. Finally, the correctness of the resulting
self-reductions is checked against separately generated test-data, as well as formally verified using
off-the-shelf tools.
In addition to learning randomized reductions, we also applied the same learning algorithm to

infer loop invariants and post-conditions of numerical programs.
We have empirically evaluated Bitween on 40 different programs, including also all the bench-

marks previously used in [Blum et al. 1993; Rubinfeld 1999]. We were able to derive all known
self-reducible properties, as well as multiple new properties that are not covered in the existing
work. Bitween outperforms existing invariant generation tools in scalability, stability, sample
efficiency, and execution time. Bitween requires fewer samples, runs faster.

Contributions. This work makes the following contributions:

• We introduce Bitween, a linear regression-based automated learning algorithm that effectively
discovers complex nonlinear randomized (self)-reductions and other arbitrary program invariants
(e.g., loop invariants and post conditions) in mixed integer and floating-point programs (see
Section 4).
• Wepresent a rigorous theoretical framework for learning randomized (self)-reductions, advancing
formal foundations in this area (see Section 3).
• We create a benchmark suite, RSR-Bench, to evaluate Bitween’s effectiveness in learning ran-

domized reductions. This suite includes a diverse set of mathematical functions commonly used
in scientific and machine learning applications (see Table 3). Our evaluation compares Bitween’s
linear regression backend, which we call Bitween, against a Mixed-Integer Linear Programming
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1 double Π(double x) {
2 const int trms = 30;
3 double sum = 1.0;
4 double trm = 1.0;
5 double neg_x = -x;
6 for (int n = 1; n < trms; n++) {
7 trm *= neg_x / n;
8 sum += trm;
9 }
10 return 1.0 / (1.0 + sum);
11 }
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Fig. 1. An implementation of the sigmoid activation function, and a graph representing randomly selected

points by Bitween which are then used to compute an RSR 𝜎 (𝑥) = 𝜎 (𝑥+𝑟 ) (𝜎 (𝑟 )−1)
2𝜎 (𝑥+𝑟 )𝜎 (𝑟 )−𝜎 (𝑥+𝑟 )−𝜎 (𝑟 )

(MILP) backend, which we call Bitween-Milp, showing that linear regression-based learning
outperforms MILP in both scalability and stability within this domain (see Section 5).
• We implement Bitween in Python and demonstrate its performance on an extended version of

NLA-DigBench [Beyer 2017; Nguyen et al. 2014a], which includes nonlinear loop invariants and
post-conditions (see Table 4). Our empirical evaluation shows that Bitween surpasses leading
tools Dig [Nguyen et al. 2012, 2014b, 2021] and SymInfer [Nguyen et al. 2017b, 2022] in capability,
runtime efficiency, and sampling complexity (see Section 5).
Bitween and RSR-Bench are open source and available as a Python package. They are accessible

through an anonymized web application that interfaces with a subset of C language programs at:
https://bitween.fun.

2 MOTIVATING EXAMPLE

In this section we illustrate the use of randomized self-reductions (RSR) and how Bitween
computes them on the example of the sigmoid function, 𝜎 (𝑥) = 1/(1 + 𝑒−𝑥 ). The sigmoid function
is commonly used in neural networks [e.g., Han and Moraga 1995], and in particular in binary
classification and logistic regression problems, as it maps input values to a value between 0 and 1.
The program Π(𝑥) given in Figure 1 approximates the 𝜎 (𝑥) by using a Taylor series expansion. Here,
Π denotes the implementation of sigmoid function 𝜎 . Clearly, Π(𝑥) computes only an approximate
value of 𝜎 (𝑥).

We invoked Bitween on Π and it derived the following RSR:

𝜎 (𝑥) = 𝜎 (𝑥 + 𝑟 ) (𝜎 (𝑟 ) − 1)
2𝜎 (𝑥 + 𝑟 )𝜎 (𝑟 ) − 𝜎 (𝑥 + 𝑟 ) − 𝜎 (𝑟 ) , (1)

where 𝑟 is some random value. We manually verified that indeed the sigmoid function satisfies
Equation (1). To the best of our knowledge, this is the first known RSR for the sigmoid function. In
this example, Bitween inferred this RSR with 15 independent and random samples of 𝑥 and 𝑟 . In
the plot in Figure 1, we depict the value of Π(𝑥), identified on the graph with ▲, and the values of
Π(𝑥+𝑟 ),Π(𝑥−𝑟 ) and Π(𝑟 ), shown on the graph with ●,■ and★. Notice that all ▲’s are lying on the
line depicting 𝜎 (𝑥).

Moreover, our derived RSR computes 𝜎 (𝑥) by using only 𝜎 (𝑥+𝑟 ) and 𝜎 (𝑟 ), although the algorithm
of Bitween is computing Π on random (yet correlated) inputs 𝑥+𝑟, 𝑥−𝑟 , and 𝑟 . The learned RSR in
Equation (1) can be used to compute the value of Π(𝑥) at any point 𝑥 by evaluating Π(𝑥+𝑟 ) and

https://bitween.fun
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1 double ω(double x) {
2 const int trms = 30;
3 double sum = 1.0;
4 double trm = 1.0;
5 double neg_x = -x;
6 for (int n = 1; n < trms; n++) {
7 trm *= neg_x / n;
8 sum += trm;
9 }
10 return 1.0 / (1.0 + sum);
11 }

Fig. 1. An implementation of the sigmoid activation function, and a graph representing randomly selected
points by B!"#$$% which are then used to compute an RSR 𝐿 (𝑀) = 𝐿 (𝑀+𝑁 ) (𝐿 (𝑁 )→1)

2𝐿 (𝑀+𝑁 )𝐿 (𝑁 )→𝐿 (𝑀+𝑁 )→𝐿 (𝑁 )

(MILP) backend, which we call B!"#$$%-M!&’, showing that linear regression-based learning
outperforms MILP in both scalability and stability within this domain (see Section 5).

• We implement B!"#$$% in Python and demonstrate its performance on an extended version of
NLA(D!)B$%*+ [Beyer 2017; Nguyen et al. 2014a], which includes nonlinear loop invariants and
post-conditions (see Table 4). Our empirical evaluation shows that B!"#$$% surpasses leading
toolsD!) [Nguyen et al. 2012, 2014b, 2021] and S,-I%.$/ [Nguyen et al. 2017b, 2022] in capability,
runtime e!ciency, and sampling complexity (see Section 5).
B!"#$$% and RSR(B$%*+ are open source and available as a Python package. They are accessible

through an anonymized web application that interfaces with a subset of C language programs at:
https://bitween.fun (see Appendix C).

2 MOTIVATING EXAMPLE
In this section we illustrate the use of randomized self-reductions (RSR) and how B!"#$$%

computes them on the example of the sigmoid function, 𝐿 (𝑀) = 1/(1 + 𝑁→𝑀 ). The sigmoid function
is commonly used in neural networks [e.g., Han and Moraga 1995], and in particular in binary
classi"cation and logistic regression problems, as it maps input values to a value between 0 and 1.
The program ω(𝑀) given in Figure 1 approximates the 𝐿 (𝑀) by using a Taylor series expansion. Here,
ω denotes the implementation of sigmoid function 𝐿 . Clearly, ω(𝑀) computes only an approximate
value of 𝐿 (𝑀).

We invoked B!"#$$% on ω and it derived the following RSR:

𝐿 (𝑀) =
𝐿 (𝑀 + 𝑂 ) (𝐿 (𝑂 ) → 1)

2𝐿 (𝑀 + 𝑂 )𝐿 (𝑂 ) → 𝐿 (𝑀 + 𝑂 ) → 𝐿 (𝑂 )
, (1)

where 𝑂 is some random value. We manually veri"ed that indeed the sigmoid function satis"es
Equation (1). To the best of our knowledge, this is the "rst known RSR for the sigmoid function. In
this example, B!"#$$% inferred this RSR with 15 independent and random samples of 𝑀 and 𝑂 . In
the plot in Figure 1, we depict the value of ω(𝑀), identi"ed on the graph with ⊋, and the values of
ω(𝑀+𝑂 ),ω(𝑀→𝑂 ) and ω(𝑂 ), shown on the graph with ✁,✂ and𝐿. Notice that all ⊋’s are lying on the
line depicting 𝐿 (𝑀).

Moreover, our derived RSR computes 𝐿 (𝑀) by using only 𝐿 (𝑀+𝑂 ) and 𝐿 (𝑂 ), although the algorithm
of B!"#$$% is computing ω on random (yet correlated) inputs 𝑀+𝑂 , 𝑀→𝑂 , and 𝑂 . The learned RSR in
Equation (1) can be used to compute the value of ω(𝑀) at any point 𝑀 by evaluating ω(𝑀→𝑂 ) and

Select a term as the next regressand: ￼  [f(x), f(y), f(x + y), …, f(x − y)2]

Bitween’s Learning Algorithm ￼Λ

￼
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 Construct query class and recovery class ￼  where ￼  and ￼  Rk(Q, P) q1, …, qk ∈ Q p ∈ P

Input
Program ￼Π
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  Execute target functions by simulating ￼ with ￼ : ￼f Π Π(xi), Π(ri), Π(xi + ri), Π(xi + ri)
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MSE
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Output
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Fig. 2. Overview of Bitween.

Π(𝑟 ). Since Π(𝑥) ≠ 𝜎 (𝑥) for some values of 𝑥 , randomized reductions can be used to construct
self-correcting programs [Blum et al. 1993; Rubinfeld 1994; Tompa and Woll 1987].
The RSR in Equation (1) can also be used in an instance hiding protocol [Abadi et al. 1987]. As

an illustration, if a weak device needs to compute 𝜎 on its private input 𝑥 , it can do that by sending
computing requests to two powerful devices that do not communicate with each other: the first
powerful device computes 𝜎 (𝑟 ) with random 𝑟 , and the second powerful one computes 𝜎 (𝑥+𝑟 ).
After receiving their outputs, the weak device can compute 𝜎 (𝑥) by evaluating Equation (1).

Additionally, in this particular case the derived RSR can be used to reduce the computation costs.
If a weak device computes the value of 𝜎 (𝑟 ) beforehand and stores it as some constant 𝐶 , then the
computation of 𝜎 (𝑥) simplifies to 𝜎 (𝑥+𝑟 ) (𝐶−1)

2𝜎 (𝑥+𝑟 )𝐶−𝜎 (𝑥+𝑟 )−𝐶 . While 𝑥 is a double, 𝑥+𝑟 might require less
precision.

We now illustrate how Bitween derived the above RSR.
Bitween applies a series of steps to learn randomized reductions (see Figure 2). Bitween takes

a program Π as input and systematically constructs a query class using the input variable 𝑥 and
randomness 𝑟 , such as 𝑥+𝑟, 𝑥−𝑟, 𝑟 (Step 1 ). The tool then independently and uniformly samples data
using a specified distribution, evaluating target functions 𝜎 (𝑥 + 𝑟 ), 𝜎 (𝑥 − 𝑟 ), 𝜎 (𝑟 ), . . . by simulating
𝜎 with Π based on the sampled inputs (Step 2 ). Subsequently, Bitween constructs linear models
by treating nonlinear terms as constant functions (Step 3 ). Since the model is unsupervised, it



Learning Randomized Reductions and Program Properties 5

instantiates candidate models in parallel, where each model takes a distinct target function as its
supervised variable (Step 4 ). The tool then uses various linear regression models, including Ridge
and Lasso with fixed hyperparameters, and the best model is picked based on cross validation.
Then it iteratively refines the model by eliminating irrelevant targets from this model (Step 5 ).
The coefficients of the final model is further refined using a best rational approximation technique.
Finally, Bitween validates these properties using the test dataset through property testing (Step
6 ). After validation, Bitween outputs the learned randomized self-reductions of the program Π
with their corresponding errors.

Optionally, the user can refine the analysis by enabling a set of reduction techniques. First,
Bitween creates an equivalence class of properties based on structural similarity (Step 8 ). Second,
it applies Gröbner Basis [Buchberger 2006] reduction to eliminate redundant properties (Step 9 ).
Lastly, Bitween uses bounded model-checking [Kroening and Tautschnig 2014] or property-based
testing [Goldstein et al. 2024] to ensure correctness of the properties and eliminates any unsound
ones (Step 10 ).

3 THEORETICAL FOUNDATIONS

In this section, we give a definitional treatment of learning randomized self-reductions (RSRs).
Our goal is to rigorously define the setting in which Bitween resides, which may of independent
interest for future theoretical work.
Throughout this section, we will say that a set 𝑍 is uniformly-samplable if it can be equipped

with a uniform distribution; we let 𝑧 ∼ 𝑍 denote a uniformly random sample from 𝑍 .

3.1 Randomized self-reductions

We start from a definition of randomized self-reductions [Goldwasser and Micali 1984]. Our pre-
sentation takes after Lipton [1989] and Goldreich [2017], modified for convenience.

Definition 1 (Randomized self-reduction). Fix a uniformly-samplable input domain 𝑋 , a
range 𝑌 , and uniformly-samplable randomness domain 𝑅. Let

𝑓 : 𝑋 → 𝑌

𝑞1, . . . , 𝑞𝑘 : 𝑋 × 𝑅 → 𝑋 (Query functions)

𝑝 : 𝑋 × 𝑅 × 𝑌𝑘 → 𝑌 (Recovery function)

such that for all 𝑖 ∈ [𝑘] and 𝑥 ∈ 𝑋 , 𝑢𝑖 B 𝑞𝑖 (𝑥, 𝑟 ) is distributed uniformly over 𝑋 when 𝑟 ∼ 𝑅 is
sampled uniformly at random.1

We say that (𝑞1, . . . , 𝑞𝑘 , 𝑟 ) is a (perfect) randomized self-reduction (RSR) for 𝑓 if for all 𝑟 ∈ 𝑅,
letting 𝑢𝑖 B 𝑞𝑖 (𝑥, 𝑟 ) for all 𝑖 ∈ [𝑘], the following holds:

𝑓 (𝑥) = 𝑝 (𝑥, 𝑟, 𝑓 (𝑢1), . . . , 𝑓 (𝑢𝑘 )) . (2)

In other words, Equation (2) holds with probability 1 over randomly sampled 𝑟 ∼ 𝑅.
For errors 𝜌, 𝜉 ∈ (0, 1), we say that (𝑞1, . . . , 𝑞𝑘 , 𝑝) is a (𝜌, 𝜉)-approximate randomized self-reduction

((𝜌, 𝜉)-RSR) for 𝑓 if, for all but a 𝜉-fraction of 𝑥 ∈ 𝑋 , Equation (2) holds with probability ≥ 1 − 𝜌 over
the random samples 𝑟 ∼ 𝑅. That is,

Pr
𝑥∼𝑋

[
Pr
𝑟∼𝑅

[
𝑓 (𝑥) = 𝑝 (𝑥, 𝑟, 𝑓 (𝑢1), . . . , 𝑓 (𝑢𝑘 ))
where ∀𝑖 ∈ [𝑘] 𝑢𝑖 B 𝑞𝑖 (𝑥, 𝑟 )

]
≥ 1 − 𝜌

]
≥ 1 − 𝜉 .

1Importantly, the 𝑢𝑖 ’s must only satisfy marginal uniformity, but may be correlated among themselves.
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Given a class of query functions 𝑄 ⊆ 𝑋𝑋×𝑅 and recovery functions 𝑃 ⊆ 𝑌𝑋×𝑅×𝑌𝑘

, we let RSR𝑘 (𝑄, 𝑃)
denote the class of functions 𝑓 : 𝑋 → 𝑌 for which there exist 𝑞1, . . . , 𝑞𝑘 ∈ 𝑄 and 𝑝 ∈ 𝑃 such that 𝑓 is
perfectly RSR with (𝑞1, . . . , 𝑞𝑘 , 𝑝). We write RSR(𝑄, 𝑃) when the number of queries is irrelevant.

In the literature [Goldreich 2017; Lipton 1989], the query functions are defined as randomized
functions of the input 𝑥 to be recovered. That is, as random variables 𝑞𝑖 (𝑥) ∼ 𝑋 rather than our
deterministic 𝑞𝑖 (𝑥, 𝑟 ) ∈ 𝑋 . The definitions are equivalent; we simply make the randomness in 𝑞𝑖
explicit by giving it 𝑟 as input. This choice will have two benefits:

(1) It makes explicit the amount of random bits used by the self-reduction, namely, log2 |𝑅 |.
(2) It lets us think about the query functions as deterministic. This could allow one to relate

traditional complexity measures (e.g., VC dimensions) of the function classes 𝑄 and 𝑃 to
those of the function 𝑓 .

To elaborate more on the second point, let us restrict the discussion to polynomials over finite
fields, i.e., 𝑓 : F𝑚𝑛 → F𝑛 for some 𝑛 ∈ N. Lipton [Lipton 1989] showed that even extremely simple
choices of 𝑄 and 𝑃 can be very expressive.

Fact 2 ([Lipton 1989]). Any𝑚-variate polynomial 𝑓 : F𝑚ℓ → Fℓ of degree 𝑑 < ℓ − 1 is perfectly
randomly self-reducible with 𝑘 = 𝑑 + 1 queries and randomness domain 𝑅 = F𝑚ℓ . Furthermore, the
queries 𝑞1, . . . , 𝑞𝑑+1 : F2𝑚ℓ → F𝑚ℓ and recovery function 𝑝 : F2𝑚+𝑑+1ℓ → F𝑛 are linear functions.

3.2 Learning randomized self-reductions

The question of interest is whether, given access to samples from 𝑓 ∈ RSR𝑘 (𝑄, 𝑃), it is possible
to learn an (approximate) RSR for 𝑓 . Before we can continue, we must first specify how these
samples are drawn. Typically, learners are either given input-output pairs (𝑥, 𝑓 (𝑥)) where 𝑥 ’s are
either independent random samples, or chosen by the learner herself. Learning RSRs will occur in
an intermediate access type, in which 𝑥 ’s are drawn in a correlated manner.
We formally define these access types next. Our presentation is based on that of O’Donnell

[2014], who, like us, is focused on samples drawn from the uniform distribution. We note that
learning from uniformly random samples has been studied extensively in the literature [Golea et al.
1996; Hancock 1993; Jackson et al. 2002; Jackson and Servedio 2006; Klivans et al. 2004; Kucera et al.
1994; Verbeurgt 1990].

Definition 3 (Sample access). Fix a uniformly-samplable set 𝑋 , function 𝑓 : 𝑋 → 𝑌 and a
probabilistic algorithm Λ that takes as input𝑚 (labeled) samples from 𝑓 . We consider three types of
sample access to 𝑓 :

(1) Independent random samples: Λ is given (𝑥 𝑗 , 𝑓 (𝑥 𝑗 ))𝑚𝑗=1 for independent and uniformly sam-
pled 𝑥 𝑗 ∼ 𝑋 .

(2) Correlated random samples: Λ is given (𝑥 𝑗 , 𝑓 (𝑥 𝑗 ))𝑚𝑗=1 drawn from a distribution such that,
for each 𝑗 ∈ [𝑚], the marginal on 𝑥 𝑗 is uniformly random over 𝑋 . However, different 𝑥 𝑗 ’s may
be correlated.

(3) Oracle queries: During Λ’s execution, it can request the value 𝑓 (𝑥) for any 𝑥 ∈ 𝑋 .
The type of sample access will be explicitly stated, unless clear from context.

Remark 4. Facing forward, we note that more restrictive access types will correspond to more
challenging settings of learning (formally defined in Definition 5). Intuitively (and soon, formally),
if 𝐹 is learnable from𝑚 independent samples, it is also learnable from𝑚 correlates samples, and𝑚
oracle queries as well.

Learning from correlated samples is one of two main theoretical innovations introduced in this
work (the other will appear shortly). We note that PAC learning [Valiant 1984] requires learning
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under any distribution 𝜇 of inputs over 𝑋 , whereas we consider learning only when samples are
drawn from the uniform distribution over 𝑋 (with possible correlation). Learning from correlated
samples could be adapted to arbitrary distributions 𝜇 by considering correlated samples (𝑥 𝑗 , 𝑓 (𝑥 𝑗 )) 𝑗
such that the marginal on each 𝑥 𝑗 is distributed according to 𝜇. This interesting setting is beyond
the scope of this work.
Finally, for an input 𝑥 we will use 𝑛 = |𝑥 | to denote its. This will allow us to place an efficiency

requirement on the learner (e.g., polynomial time in 𝑛). For a class of functions 𝐹 from inputs 𝑋 to
outputs 𝑌 , we will use 𝐹𝑛 to denote the class restricted to inputs of length 𝑛, and similarly we let
𝑄𝑛 (resp. 𝑃𝑛) denote the restriction of the query (resp. recovery) class.2

Definition 5 (Learning RSR). Fix a reduction class (𝑄, 𝑃) = (⋃𝑛 𝑄𝑛,
⋃

𝑛 𝑃𝑛) and a function
class 𝐹 =

⋃
𝑛 𝐹𝑛 where 𝐹𝑛 ⊆ RSR𝑘 (𝑄𝑛, 𝑃𝑛) for some constant 𝑘 ∈ N.3 A (𝑄, 𝑃, 𝑘)-learner Λ for 𝐹 is a

probabilistic algorithm that is given inputs 𝑛 ∈ N and𝑚 samples of 𝑓 ∈ 𝐹𝑛 , collected in one of the
three ways defined in Definition 3. Λ outputs query functions 𝑞1, . . . , 𝑞𝑘 ∈ 𝑄𝑛 and a recovery function
𝑝 ∈ 𝑃𝑛 .

We say 𝐹 is (𝑄, 𝑃)-RSR𝑘 -learnable if there exists a (𝑄, 𝑃, 𝑘)-learner Λ such that for all 𝑓 ∈ 𝐹 and
𝜌, 𝜉, 𝛿 ∈ (0, 1), given𝑚 B 𝑚(𝜌, 𝜉, 𝛿) labeled samples from 𝑓 , with probability ≥ 1−𝛿 over the samples
and randomness of Λ, Λ outputs 𝑞1, . . . , 𝑞𝑘 ∈ 𝑄 and 𝑝 ∈ 𝑃 that are (𝜌, 𝜉)-RSR for 𝑓 .
We say that 𝐹 is efficiently (𝑄, 𝑃)-RSR𝑘 -learnable if Λ runs in time poly(𝑛, 1/𝜌, 1/𝜉, 1/𝛿). The

function𝑚(𝜌, 𝜉, 𝛿) is called the sample complexity of the learner Λ. We will omit the (𝑄, 𝑃) prefix
when it is clear from context.

Definition 5 takes after the classic notion of Probably Approximately Correct (PAC) learning
[Valiant 1984] in that it allows the learner a𝛿 failure probability, and asks that the learned𝑞1, . . . , 𝑞𝑘 , 𝑟
only approximately recover 𝑓 . The main difference is that in, Definition 5, Λ is required to output
an approximate RSR for 𝑓 , whereas in PAC learning it is required to output a function 𝑓 ∈ 𝐹 that
approximates 𝑓 itself; that is, such that 𝑓 (𝑥) = 𝑓 (𝑥) with high probability over 𝑥 ∼ 𝑋 .
In fact, when samples are drawn uniformly and independently (Item 1 in Definition 3), PAC

learnability is a strictly stronger form of learning than RSR learnability, as captured by the following
two claims:

Claim 6. Fix query class 𝑄 , recovery class 𝑃 , and function class 𝐹 ⊆ RSR𝑘 (𝑄, 𝑃). If 𝐹 is (Uniform)
PAC-learnable with sample complexity𝑚PAC (𝜀, 𝛿), then it is RSR-learnable with sample complexity

𝑚RSR (𝜌, 𝜉, 𝛿) ≤ 𝑚PAC (min(𝜌/𝑘, 𝜉), 𝛿).
However, the RSR-learner may be inefficient.

We note that Claim 6 is trivial when considering a class 𝐹 ⊆ RSR𝑘 (𝑄, 𝑅) characterized by a
single RSR, i.e., such that there exist 𝑞1, . . . , 𝑞𝑘 ∈ 𝑄 and 𝑝 ∈ 𝑃 such that Equation (2) holds with
probability 1 for all 𝑓 ∈ 𝐹 . For one, this follows because the RSR-learner does not need any samples
and may simply output 𝑞1, . . . , 𝑞𝑘 , 𝑟 .4 This gives rise to the following claim.

Claim 7. There exist classes (𝑄, 𝑃) = (⋃𝑛 𝑄𝑛,
⋃

𝑛 𝑃𝑛) and 𝐹 =
⋃

𝑛 𝐹𝑛 ⊆ RSR(𝑄, 𝑃) such that 𝐹
is efficiently RSR-learnable from 0 samples, but for any 𝜀 ≤ 1/2, Uniform PAC-learning 𝐹𝑛 requires
𝑚PAC (𝜀, 𝛿) ≥ 𝑛 oracle queries.
2This slight informality will allow us to avoid encumbering the reader with a subscript 𝑛 throughout the paper.
3The requirement that 𝐹𝑛 ⊆ RSR𝑘 (𝑄𝑛, 𝑅𝑛 ) is a realizability assumption. We leave the agnostic setting, in which 𝐹𝑛 ⊈

RSR𝑘 (𝑄𝑛, 𝑅𝑛 ) , to future work.
4For a more nuanced reason, note that the sample complexity bound𝑚PAC (𝜌/𝑘, 𝛿 ) trivializes: Any class 𝐹 characterized by
a single RSR has distance at least 1/𝑘 , meaning that Pr𝑧∼𝑋 [ 𝑓 (𝑧 ) ≠ 𝑓 (𝑧 ) ] ≥ 1/𝑘 [Goldreich 2017, Exercise 5.4]. Thus, for
any 𝜀 = 𝜌/𝑘 < 1/𝑘 , 𝑓 is the only function in 𝐹 that is 𝜀-close to itself. In other words, learning within accuracy 𝜀 amounts
to exactly recovering 𝑓 .
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Consequentially, Uniform PAC-learning 𝐹𝑛 requires at least 𝑛 correlated or independent random
samples (see Remark 4).

The Fundamental Theorem of Learning states that sample complexity of PAC-learning is tightly
characterized by the VC-dimension of the function class 𝐹 . In the future, it would be interesting to
obtain an analogous Fundamental Theorem of RSR-Learning, which relates the sample complexity
to “intrinsic” dimensions of 𝑄 , 𝑅, and 𝐹 ⊆ RSR(𝑄, 𝑅).

4 BITWEEN: AN ALGORITHM FOR LEARNING RANDOM SELF-REDUCTIONS

4.1 Algorithm Overview

Bitween expects opaque-box access5 to a program Π which is an alleged implementation of some
(unknown) function 𝑓 . The goal is to learn an RSR for 𝑓 (see Definition 5). Bitween is also given the
input domain 𝑋 ,6 the class of query functions 𝑄 and recovery functions 𝑃 . Note that these classes
need not be explicitly given; in fact, throughout the rest of this paper, we will consider recovery
functions 𝑃 to be polynomials of degree at most 𝑑 (therefore, only the degree 𝑑 needs to be given
to Bitween). If the query class 𝑄 is not explicitly given, Bitween will utilize a pre-constructed
collection of query functions, whose compilation has been guided by the many applications of this
general approach (see Table 6). Whether the configuration (𝑄,𝑑) is provided explicitly by the user
or fetched from the library of templates, we consider it as input to Bitween (Algorithm 1).
At a high level, Bitween works as follows: (i) generate all monomials of degree ≤ 𝑑 over

symbolic variables Π(𝑞(𝑥, 𝑟 ))—one variable for each possible query function 𝑞 ∈ 𝑄 ; (ii) construct a
linear regression problem with a regressand for each monomial; (iii) query Π(𝑥𝑖 ) and Π(𝑞(𝑥𝑖 , 𝑟𝑖 ))
for random 𝑥, 𝑟 ∈ 𝑋 ; (iv) fit the regressands to the samples using sparsifying linear regression,
thereby eliminating most monomials. Algorithm 1 is a full description (up to the sparsifying linear
regression), and Section 4.2 provides concrete implementation details.

4.2 Implementation Details

Converting an unsupervised problem into supervised learning. Each term in the polynomial expression
is treated as a dependent variable (label), while the rest form the vector of regressors (features).
Bitween constructs a set of linear regression models for each term in the polynomial expression
and runs them in parallel with training data. The correctness of the inferred properties is verified
using test data through property testing. For low-degree polynomials, the total number of terms in
the polynomial 𝑡terms can be considered bounded, so the complexity is𝑂 (𝑡terms ×𝑛samples ×𝑛2features).
However, the number of monomials in a polynomial with 𝑛 terms and degree 𝑑 grows exponentially,
given by the binomial coefficient

(
𝑛+𝑑
𝑑

)
. For high-degree polynomials or many variables, the number

of terms will grow very fast, leading to an exponential blow-up. Therefore, the general case won’t
be polynomial due to this exponential factor.

Grid search with cross validation and linear regression. Bitween uses multiple linear regression to
infer nonlinear properties. The complexity of ordinary linear regression is polynomial: 𝑂 (𝑛samples ·
𝑛2features) [Pedregosa et al. 2024]. Bitween uses grid search and cross-validation to tune parameters.
It applies simple linear regression, Ridge, and Lasso regressions (L1 and L2 regularization) with
various hyperparameters, selecting the best model by splitting the data into training, validation,
and test sets. With a fixed total number of hyperparameters 𝑐params, the complexity is 𝑂 (𝑐params ·
𝑡terms · 𝑛samples · 𝑛2features).

5More precisely, correlated sample access (Definition 3).
6Bitween is given an input domain 𝑋 implicitly equipped with the uniform distribution 𝑥 ∼ 𝑋 . For simplicity, the
randomness domain 𝑅 in Definition 1 is taken to be the same as the input domain 𝑋 .
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Algorithm 1: Bitween
Input: Program Π, query class𝑄 , recovery function degree bound 𝑑 , input domain 𝑋 , sample complexity𝑚.
Output: Randomized self-reduction (𝑞1, . . . , 𝑞𝑘 , 𝑝).

1 For each query function 𝑞 ∈ 𝑄 , initialize a variable 𝑣𝑞 . // Each 𝑣𝑞 corresponds to a value Π (𝑞 (𝑥, 𝑟 ) ).
2 LetMON be all monomials of degree at most 𝑑 over the variables (𝑣𝑞)𝑞∈𝑄 .
3 For each monomial 𝑉 ∈ MON, initialize the regressand 𝐶𝑉 . // We will fit Π (𝑥 ) = ∑

𝑉 𝐶𝑉 · 𝑉 (𝑥, 𝑟 )
4 For each 𝑖 ∈ [𝑚], sample input 𝑥𝑖 ∈ 𝑋 and randomness 𝑟𝑖 ∈ 𝑋 .
5 Query Π for the values Π(𝑥𝑖 ) and Π(𝑞(𝑥𝑖 , 𝑟𝑖 )) for each 𝑞 ∈ 𝑄 .
6 Fit the regressands 𝐶𝑉 to the equations

Π(𝑥1) =
∑︁

𝑉 ∈MON

𝐶𝑉 ·𝑉 (𝑥1, 𝑟1), . . . Π(𝑥𝑚) =
∑︁

𝑉 ∈MON

𝐶𝑉 ·𝑉 (𝑥𝑚, 𝑟𝑚)

using the linear regression variant described in Section 4.2. Let 𝐶𝑉 denote the fitted regressands.
7 Initialize an empty set of query functions 𝑄 ← ∅.
8 foreach 𝑉 ∈ MON do
9 if 𝐶𝑉 ≠ 0 then
10 Add to 𝑄 all queries 𝑞 such that the variable 𝑣𝑞 appears in the monomial 𝑉 .
11 Let (𝑞1, . . . , 𝑞𝑘 ) ← 𝑄 where 𝑘 = |𝑄 |. For each 𝑞𝑖 , let 𝑣𝑖 denote its corresponding variable defined in Line 1.

Define the recovery function

𝑝 (𝑥, 𝑟, 𝑣1, . . . , 𝑣𝑘 ) B
∑︁

𝑉 :𝐶𝑉 ≠0

𝐶𝑉 ·𝑉 (𝑥, 𝑟 ) .

return The randomized self-reduction (𝑞1, . . . , 𝑞𝑘 , 𝑝).

The datasets were divided in the following way: 80% of samples in each of the datasets were used
for training, whereas the remaining 20% were used for testing. We used grid search to tune the
hyperparameters of each method. The optimal setting of the parameters was determined based on
5-fold cross-validation performed on training data only. The setting with the best 𝑅2 score across
all folds on the whole training data was picked for the next step of Bitween. The performance
of the methods was measured on both training and testing datasets on the best model obtained
during cross-validation. For linear regression methods, Bitween uses scikit-learn [Pedregosa et al.
2011] implementations with tailored hyperparameters for each model:
• Ordinary Least Squares Regression (Linear Regression): This model minimizes the sum of squared
errors for a linear relationship between inputs and the target variable. By default, the model
includes an intercept term, which can be controlled using the fit_intercept parameter. Setting
fit_intercept=True allows the model to estimate an intercept term, which is helpful when
target data is not centered around zero. For linear regression, the model’s complexity is computed
using singular value decomposition of 𝑋 , where 𝑋 has shape (𝑛samples, 𝑛features). This results in
a cost of 𝑂 (𝑛samples · 𝑛2features), assuming 𝑛samples ≥ 𝑛features. Hyperparameters: fit_intercept
(True, False), positive (True, False) to enforce non-negative coefficients.
• Ridge Regression: Ridge adds L2 regularization to the linear model, penalizing large coefficients

and preventing overfitting. Like Linear Regression, Ridge includes the fit_intercept parameter
to control the inclusion of an intercept term. The primary hyperparameter alpha controls the
regularization strength and is tested over values [0.001, 0.01, 0.1, 100, 1000]. Ridge has the same
complexity as Linear Regression, with a cost of 𝑂 (𝑛samples · 𝑛2features).
• Lasso Regression: Lasso introduces L1 regularization, which can reduce certain coefficients to
zero, effectively performing feature selection. It includes the fit_intercept parameter and



10 Erata et al.

is optimized with alpha values [0.0001, 0.001, 0.01, 0.1, 100, 1000]. For Lasso, the complexity
depends on the number of features 𝐾 and sample size 𝑛. Lasso, as implemented with the LARS
algorithm [Efron et al. 2004], has a computational complexity of O(𝐾3 + 𝐾2 · 𝑛).When 𝐾 < 𝑛,
the computational complexity is 𝑂 (𝐾2 · 𝑛), and when 𝐾 ≥ 𝑛, it increases to 𝑂 (𝐾3).
These models allow Bitween to apply various regularization techniques, improving robustness

and feature selection in regression tasks.

Iterative dimensionality reduction. Dimensionality reduction is performed heuristically. If some
coefficients approach zero, their corresponding dimensions are removed, and the linear regression
models are rerun. The total number of refinement iterations 𝑐iter is constant, so the complexity is
𝑂 (𝑐iter · 𝑐params · 𝑡terms · 𝑛samples · 𝑛2features).

Best Rational Approximation. Coefficients are refined using a Best Rational Approximation tech-
nique [Khinchin 1964], which involves finding the rational number (a fraction) that most closely
approximates a given real number. In our context, the real number is a high-precision floating-point
value determined by the linear regression algorithm. The approximation adheres to a constraint on
the maximum allowable denominator.

For example, if a coefficient is 0.34, the best rational approximation with a maximum denominator
of 10 is 1

3 . This is often more practical in our context than 34
100 . The maximum allowable denominator

is defined as 10 times the fractional precision set by the user, with a default value of 1000.

Property testing. In order for Bitween to check if a randomized reduction or program property
𝑝 holds on a program Π, it tests 𝑝 on a random set of inputs and checks if 𝑝 is satisfied (Step 7 ).
Since the functional equation only contains calls to Π and known functions, it is possible to test 𝑝
without knowing the actual function 𝑓 . Here, we define the notion of correctness since we consider
program Π almost correct in many cases, meaning that it is correct up to a small error bound 𝜀. Let
Pr𝑥∈𝑋 [·] denote the probability of the event in the enclosed expression when 𝑥 is uniformly chosen
from 𝑋 . Let error(𝑓 , 𝑃, 𝑋 ) be the probability that Π(𝑥) ≠ 𝑓 (𝑥) when 𝑥 is randomly chosen from 𝑋 .

Definition 8 (𝜀-correctness). A program Π 𝜀-computes 𝑓 on the domain 𝑋 if Π is correct on all
but an 𝜀 fraction of inputs in the domain; that is: Pr𝑥∈𝑋 [Π(𝑥) ≠ 𝑓 (𝑥)] < 𝜀.

When reasoning about properties for programs computing real-valued functions, several issues
dealing with the finite precision of the computer must be dealt with. When the program works
with finite precision, the properties upon which the equality testers are built will rarely be satisfied,
even by a program whose answers are correct up to the required (or hardware maximum) number
of digits, since they involve strict equalities. Thus, when testing, one might be willing to pass
programs for which the properties are only approximately satisfied.
As an example of a property that does yield a good tester, consider the linearity property

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦), satisfied only by functions for 𝑓 : R→ R of the form 𝑓 (𝑥) = 𝑐𝑥, 𝑐 ∈ R. If,
by random sampling, we conclude that the program Π satisfies this property for most 𝑥,𝑦, it can be
shown that Π agrees with a linear function 𝑔 on most inputs.

Equivalence class reduction. After the RSR are learned, user can apply a set of reduction techniques
(Step 8 in Figure 2). RSRs are first normalized, converting floating-point coefficients to ratio-
nal numbers and ensuring a consistent lexicographical form. Using a union-find data structure,
equations with similar terms are merged into equivalence classes, each representing a unique
polynomial identity but accounting for minor numerical discrepancies from the learning process.
Within each class, the "best" polynomial is chosen based on a simple scoring system that favors
simpler coefficients (e.g., integers, fractions like 0.5, 0.25), which is indirectly controlled by the
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Best Rational Approximation technique. The equation with the highest score is selected as the
representative for that class.

Gröbner basis reduction. In Step 9 , the chosen representatives undergo three reduction stages: (1)
Denominator Elimination, which removes integer denominators to simplify terms; (2) Removal of
Complex Classes, discarding classes with overly large or complex coefficients based on a prede-
fined threshold; (3) Groebner Basis Reduction using SymPy’s implementation of the Buchberger
algorithm [Buchberger 2006], which minimizes the set of equations while preserving mathematical
implications. It is an NP-hard problem with the doubly exponential worst-case time complexity in
the number of variables [Bardet et al. 2015; Dubé 1990], but it is often efficient in practice for small
systems of equations.

Formal Verification and Property-based Testing. In Step 10 , the final set of polynomial equations
undergoes formal verification and property-based testing to ensure that the inferred properties
accurately hold for the functions they represent. This process involves testing the properties on a
large number of random inputs and verifying that the equations are satisfied within a specified error
margin. When learning program properties, Bitween automatically inserts the learned properties
into the corresponding code locations as assertions (see the Bresenham Figure 6 and z3sqrt Figure 7
code examples in Appendix). For formal verification, we use Civl [Siegel et al. 2015a], a symbolic
execution tool for C, and perform bounded model checking to validate the properties within the
specified intervals.

4.3 Finding Randomized Reductions in Library Setting

The concept of randomized reductions can be extended to what is known as the “library set-
ting” [Blum et al. 1993]. In the library setting, RSRs of certain functions are assumed to be available
in a library. This allows for generation of randomized reductions using the library rather than
learning RSR properties from scratch. Bitween can construct randomized reductions for a given
complicated function using randomized self-reductions of elementary functions that Bitween
learned previously in the library setting.
Let’s consider the Savage loss [Masnadi-Shirazi and Vasconcelos 2008] function as an example.

It is used in classification tasks in machine learning and is defined as: 𝑓 (𝑥) = 1/(1 + 𝑒𝑥 )2. Let
𝑔(𝑥) = 𝑒𝑥 . We aim to derive the RR property for this function using Bitween. The RSR property
for 𝑔(𝑥) is: 𝑔(𝑥+𝑟 ) = 𝑔(𝑥)𝑔(𝑟 ). By applying this property, we can derive the following RR for the
Savage loss function: 𝑓 (𝑥+𝑟 )𝑔(𝑥)2𝑔(𝑟 )2 + 2𝑓 (𝑥+𝑟 )𝑔(𝑥)𝑔(𝑟 ) + 𝑓 (𝑥+𝑟 ) − 1 = 0.We can now express
𝑓 (𝑥+𝑟 ) in terms of 𝑔(𝑥) and 𝑔(𝑟 ) as follows: 𝑓 (𝑥+𝑟 ) = 1/(𝑔(𝑥)2𝑔(𝑟 )2 + 2𝑔(𝑥)𝑔(𝑟 ) + 1). This example
illustrates how complex functions like the Savage loss can be reduced using RSR properties of
elementary functions, leading to a randomized reduction (see Definition 9) that encapsulates the
function’s behavior under addition using different target functions.

4.4 Learning Program Invariants

Loop invariants are critical aspects of program verification, serving as the foundation for establishing
the correctness of loops within algorithms and ensuring the correctness of the program as a whole.
A loop invariant is a property that holds true before and after each iteration of the loop, thereby
ensuring the loop’s correctness under all iterations. Modern formal verification tools such as
Dafny [Leino 2010] rely heavily on loop invariants to analyze code having loops. When invariants
are provided by the user, these tools can prove properties about programs more efficiently.
The provided C code in Figure 3 efficiently computes the cubes of consecutive integers from 0

up to a specified integer 𝑎. This algorithm, attributed to Cohen [2013], leverages a method that
avoids direct multiplication, instead using iterative additions to calculate each cube. The algorithm
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1 int cubes(int a) {
2 int n = 0, x = 0, y = 1, z = 6;
3 while (n <= a) {
4 𝑝1(a, n, x, y, z);
5 n = n + 1;
6 x = x + y;
7 y = y + z;
8 z = z + 6;
9 }
10 𝑝2(a, n, x, y, z);
11 return x;
12 }

𝑎 𝑛 𝑥 𝑦 𝑧

𝑝1


45 0 0 1 6
45 1 1 7 12
45 2 8 19 18
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

𝑝2


45 46 97336 6487 282
30 31 29791 2977 192
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Traces of the cubes function execution

Fig. 3. Bitween’s automated learning of program invariants: The cubes function computes the sum of the first

𝑎 cubes. Bitween learns the loop invariant at line 4 (see Table 1) and post condition (see Table 2) at line 10

automatically by observing the function traces. At both locations, Bitween is instructed to learn the function

𝑝 , using the queries 𝑎, 𝑛, 𝑥 , 𝑦, and 𝑧.

Table 1. Learned Loop Invariants for 𝑝1 (1323 Samples given, Query Functions: {n, x, y, z})

# Model Label 𝑑 Invariant/Property 𝜀-error 𝑚

1 Linear(intercept: T, positive: F) 𝑧 5 −6𝑛 + 𝑧 − 6 = 0 0.0 50
2 Linear(intercept: T, positive: T) 𝑦 15 −𝑛𝑧/2 + 𝑦 − 1 = 0 0.0 150
3 Lasso(𝛼 : 0.0001, intercept: T) 𝑧 15 −6𝑛 + 𝑧 − 6 = 0 0.0 150
4 Refine(Linear( ) ) .1 𝑥𝑧 3 −6𝑛𝑥 + 𝑥𝑧 − 6𝑥 = 0 0.0 40
5 Lasso(𝛼 : 0.0001, intercept: T) 𝑧 35 −6𝑛 + 𝑧 − 6 = 0 0.0 350

is based on the observation that the difference between consecutive cubes 𝑛3 and (𝑛 + 1)3 can be
expressed as (𝑛 + 1)3 − 𝑛3 = 3𝑛2 + 3𝑛 + 1, which allows the computation of each subsequent cube
by adding the appropriate increment to the current cube, thereby avoiding direct exponentiation.

In Step 1 in Figure 2, Bitween does not require query functions to be constructed with specific
randomness values 𝑟 and 𝑥 to learn loop invariants and post-conditions. Instead, the user provides
the program and specifies the locations where invariants and post-conditions should be learned. In
this example, the user designates the functions 𝑝1 and 𝑝2 at lines 4 and 10, respectively. Additionally,
the user supplies query functions 𝑎, 𝑛, 𝑥 , 𝑦, and 𝑧 to guide the learning process. In a side-effect-free
program, all these query functions depend on the nondeterministic input 𝑎, so there is no need
for the user to provide any randomness 𝑟 to the learning algorithm. The samples are derived from
the traces of the function execution, as shown in Figure 3, to feed into Step 2 . Those function
executions are triggered by a simple type-directed fuzzer that we developed for C language.
Table 1 and Table 2 show reports that Bitween generates. Different linear regression models

were learned by Bitween for the functions 𝑝1 and 𝑝2 with distinct supervised target functions
(Step 4 ). The last column,𝑚, indicates the number of samples used (sampling complexity) to learn
each model.

In Step 8 , a union-find algorithm is applied to merge the learned invariants based on structural
similarity: 6𝑛𝑥 − 𝑥𝑧 + 6𝑥 = 0 ∧ 𝑛𝑧 − 2𝑦 + 2 = 0 ∧ 6𝑛 − 𝑧 + 6 = 0. After applying Gröbner basis
reduction, the learned invariants are simplified to 6𝑛 − 𝑧 + 6 = 0 ∧ 12𝑦 − 𝑧2 + 6𝑧 − 12 = 0 in Step 9 .
In these examples, all the learned invariants are formally verified in Step 10 using a bounded model
checker, Civl [Siegel et al. 2015b].
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Table 2. Learned Post-Conditions for 𝑝2 (20 Samples given, Query Functions: {a, n, x, y, z})

# Model Label 𝑑 Invariant/Property 𝜀-error 𝑚

1 Linear(intercept: F, positive: F) 𝑎 6 𝑎 − 2𝑛 + 𝑧/6 = 0 0.0 20
2 Linear(intercept: F, positive: F) 𝑛 6 −𝑎/2 + 𝑛 − 𝑧/12 = 0 0.0 20
3 Lasso(𝛼 : 0.0001, intercept: T) 𝑛 21 −𝑎 + 𝑛 − 1 = 0 0.0 20
4 Lasso(𝛼 : 0.0001, intercept: T) 𝑧 21 −6𝑎 + 𝑧 − 12 = 0 0.0 20
5 Refine(Linear( ) ) .1 𝑛2 6 −𝑎𝑧/9 + 𝑛2 − 𝑛𝑧/18 + 𝑧/18 − 1 = 0 0.0 16
6 Refine(Linear( ) ) .2 𝑛𝑥 11 𝑎𝑥/14 + 𝑎𝑦/11 − 𝑎𝑧/15 + 𝑛𝑥 + · · · = 0 0.001 16

5 EMPIRICAL EVALUATION

5.1 Benchmark Programs and Properties

5.1.1 RSR-Bench for Randomized Self-Reductions. We create a benchmark, RSR-Bench, for evalu-
ating the learning of randomized self-reductions. RSR-Bench covers many mathematical functions
commonly used in scientific and machine learning applications (Table 3). In our evaluation, we in-
troduced a new collection of benchmarks comprising 40 continuous real-valued functions and their
RSR (see Definition 1) and RR (see Definition 9), primarily sourced from the self-testing/correctness
literature [Blum et al. 1993; Rubinfeld 1999] and mathematical texts on functional equations [Aczél
1966; Kannappan 2009; Kuczma 2009]. We also added some activation and loss functions used in
machine learning such as sigmoid, logistics, tanh, and squared loss. For each benchmark, we added
the RSR or RR having the smallest query complexity (see Table 3 and Table 5 in Appendix).

All programs implementing these functions are based on the GNU C Library’s (glibc) mathemati-
cal functions. Trigonometric Functions provide essential calculations like sine, cosine, and tangent,
integral to applications in engineering and physics. Exponentiation and Logarithm functions are
crucial for algorithms involving growth patterns and financial modeling. Hyperbolic Functions are
heavily used in complex analysis and signal processing.

5.1.2 NLA-DigBench for Program Invariants. We use programs from the NLA test suite [Nguyen
et al. 2014a] within the SV-COMP benchmark [Beyer 2017]. This test suite comprises 28 programs
implementing mathematical functions such as intdiv, gcd, lcm, and power_sum. Although these
programs are relatively short (under 50 lines of code), they contain nontrivial structures, including
nested loops and nonlinear invariant properties. To the best of our knowledge, NLA is the largest
benchmark suite for programs involving nonlinear arithmetic. Many of these programs have also
been used to evaluate other numerical invariant systems [Le et al. 2020; Nguyen et al. 2014a, 2022;
Rodríguez-Carbonell and Kapur 2007; Sharma et al. 2013]. These programs come with known
invariants at various program locations, primarily nonlinear equalities used as loop invariants and
post-conditions.

We extended this benchmark with six additional programs that include floating-point operations
(e.g., Wensley2, z3sqrt) and non-deterministic behavior (e.g., Readers), bringing the total to 34
benchmarks. For this experiment, we evaluate Bitween by identifying invariants at these specified
locations and comparing the results with known invariants and those inferred by DIG [Nguyen
et al. 2014a] and SymInfer [Nguyen et al. 2022]. The benchmarks are detailed in Table 4.

5.2 Setup

The benchmarks were executed on a MacBook Pro with 32GB memory and an Apple M1 Pro 10-core
CPU processor. For benchmarks on trigonometric, hyperbolic, and exponential functions, Bitween
was configured to generate terms up to degree 3, for the rest is set as degree 2. We selected a
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uniform sampling distribution in the [-10, 10] interval. We set the error bound at 𝛿 = 0.001 for all
benchmarks.

Linear regression vs. MILP. Using RSR-Bench (Section 5.1.1), we compare Bitween’s linear
regression backend to a Mixed-Integer Linear Programming (MILP) variant, which we call Bitween-
Milp. In the tooling architecture, we integrated an MILP solving into Bitween by replacing steps
5 and 6 with an MILP solver.
Furthermore, we experimented with additional, MILP-specific features in an attempt to make

Bitween-Milp competitive with its Linear Regression-based counterpart. To drive Bitween-Milp
to infer simpler properties, we set coefficient bounds of the MILP to 20, as MILP algorithms tend to
produce more complex solutions. Adding a timeout for the MILP solver improved efficiency. When
the MILP solver struggles with a problem, likely due to numerical errors or approximations in the
implementation, Bitween-Milp restarts the inference with new samples after a specified timeout,
typically set to 3 seconds. This process can be repeated up to three times.

Meanwhile, Bitween-Milp uses Gurobi LP solver [Gurobi Optimization 2023] (with an academic
license) by default, but it also supports open-source PuLP [Mitchell et al. 2011] and GLPK [Makhorin
2020] solvers.
We observe that MILP solvers tend to find complex solutions. Once the MILP solver finds a

solution, we would want to block this solution and check if there exists a new one. However, we
cannot efficiently perform blocking evaluations7 inMILP solvers as it is done in SAT/SMT [DeMoura
and Bjørner 2008] solvers. As the negation of conjunction of coefficient assignments results in a
disjunctive constraint which is not convex [Cococcioni and Fiaschi 2021], and MILP solvers are not
good at dealing with them. Therefore, in order to have simpler equations in case Bitween does
not find any, we incorporated a heuristic: once a property is detected and passes the property test,
Bitween sequentially blocks the three most computationally expensive terms from the inferred
property (here, the ‘cost’ of a term is defined to be relative to the total number of algebraic operations
in it), and try to search for a new optimal solution.

5.3 Results

5.3.1 RSR-Bench. Our experiment entails executing Bitween on 40 input programs; we repeated
the experiment 5 times to determine statistical significance, with each experiment taking less than
an hour on average. Bitween successfully inferred a total of 193 properties, including 46 specific
properties we sought after Groebner reductions. Furthermore, they were automatically verified
using Sympy’s simplification algorithm for the sake of this evaluation [Meurer et al. 2017]. When
supplied with the symbolic version of a function, Bitween effectively simplifies each property by
substituting function calls with their symbolic equivalents. All inferred properties were found to
be correct. Bitween discovered all random self-reducible properties of univariate and bivariate
functions over integer and real fields in the literature. To the best of our knowledge, Bitween also
discovered an undocumented instance of random self-reducibility for the sigmoid function (see
Figure 1).
Our evaluation on RSR-Bench demonstrates the clear efficiency of the linear regression (LR)

approach in Bitween compared to the Mixed-Integer Linear Programming (MILP) backend. In
terms of sample complexity, LR required only 594 samples, achieving a significant reduction of
46% compared to the 1,095 samples needed by MILP. Similarly, LR outperformed MILP in runtime,
completing evaluations in 130.53 seconds, a 30% improvement over MILP’s 187.47 seconds. These
results highlight LR’s superior efficiency in both sample usage and execution time, making it a
more scalable and effective approach for learning randomized reductions.
7https://theory.stanford.edu/~nikolaj/programmingz3.html#sec-blocking-evaluations

https://theory.stanford.edu/~nikolaj/programmingz3.html#sec-blocking-evaluations
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In general, Bitween requires fewer samples than Bitween-Milp, as shown in Figure 4d, where
all points are below the 𝑦 = 𝑥 line. The sampling method we employed incrementally increases the
sample size until the method produces a result. We began with 5 random samples, and increased
the sample size by increments of 5 up to 15, after which we increased the sample size up to 100 by
10. Across all benchmarks, Bitween consistently solved the benchmarks with fewer samples. Over
a total of 40 benchmarks, Bitween-Milp used 1,095 samples, whereas Bitween required almost
half as many, totaling 594 samples.
In terms of execution time, Bitween (130.53 seconds) was faster overall than Bitween-Milp

(187.47 seconds). This is expected, as solving MILP problems in their general form is NP-complete,
while the linear regression method used by Bitween operates in polynomial time for low-degree
polynomials. As the size of the query class increases (|𝑄 |), Bitween-Milp requires significantly
more time to solve the problem, whereas regression remains more stable. This trend is evident in
benchmarks marked with † in Table 3, such as benchmarks 8, 9, 10, and 27. For instance, Program
27 took 45 seconds for Bitween-Milp, compared to only 7.08 seconds for Bitween.
On the other hand, for smaller query classes, Bitween-Milp performs better than Bitween,

as can be observed in Table 3. This is further illustrated in Figure 4a, where the data forms two
distinct clusters. The cluster on the left represents benchmarks with smaller query classes, while
the cluster on the right corresponds to benchmarks with larger query classes.

For Benchmark 4 (marked with ‡), we were unable to find an RSR property. Therefore, we do not
know if an RSR property exists outside the given query class, which has a size of 126. However,
when we ran the same program with a library setting (Benchmark 5), both approaches successfully
identified the RR property. In this benchmark, MILP solver was able to detect infeasibility very
quickly. In contrast, Bitween’s regression algorithm must perform all computations to determine
whether a model exists within the recovery class. As a result, Bitween-Milp took 92.80 seconds
to complete this program. For the remaining benchmarks, the majority of computation times for
Bitweenwere significantly lower, generally fluctuating between 2 and 7 seconds. This demonstrates
the efficiency and stability of the regression-based approach for most benchmarks.
Bitween-Milp with different solver backends (Gurobi [Gurobi Optimization 2023], GLPK

[Makhorin 2020], and PuLP [Mitchell et al. 2011]) couldn’t find the correct coefficients for the
Sigmoid and Logistic benchmarks, whereas Bitween was able to successfully learned RSRs for them.
Interestingly, the scaled version of the Logistic benchmark was also solvable by Bitween-Milp
(program 37). This may be attributed to numerical instability in the MILP solvers while dealing
with data having large differences among coefficients.

Our evaluation over RSR-Bench shows that Bitween outperforms Bitween-Milp in scalability,
stability, sample efficiency, and execution time, excelling in large query classes where MILP strug-
gles. Bitween requires fewer samples, runs faster, and even discovers novel properties, such as
undocumented randomized self-reduction for the sigmoid and logistic functions. While Bitween-
Milp performs well in smaller query classes, its numerical instability underscores Bitween’s
robustness and effectiveness, making it the superior method for learning randomized reductions.

5.3.2 NLA-DigBench. Bitween can generate nonlinear loop invariants for programs, building
upon the ideas of predecessor tools such as Daikon [Ernst et al. 1999, 2007], Dig [Nguyen et al.
2014a], NumInv [Nguyen et al. 2017a], and SymInfer [Nguyen et al. 2017b, 2022]. While these tools
laid the groundwork for invariant detection, they are limited by their inability to reason about
real-valued implementations. Our method fills this gap by generating loop invariants characterized
as real-valued linear and nonlinear functional equations, thus providing greater precision and
reliability in analysis of loops that process real numbers.
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Fig. 4. Comparison of Time and Samples for Bitween-Milp vs. Bitween on RSR-Bench and Bitween vs. Dig,

and Bitween vs. SymInfer on NLA-DigBench.

Our evaluation on NLA-DigBench highlights the advantages of Bitween over existing tools
such as Dig and SymInfer in terms of sample efficiency, despite differences in runtime. Bitween
demonstrated exceptional sample efficiency, requiring only 12,399 samples compared to 67,981
for Dig and 39,789 for SymInfer, achieving a significant reduction of 82% and 69%, respectively.
This indicates Bitween’s ability to infer properties with far fewer samples, making it more data-
efficient. In terms of runtime, Dig was the fastest at 90.69 seconds, followed by Bitween at 180.57
seconds, while SymInfer required 446.83 seconds. While Bitween’s runtime was slightly higher
than Dig, it strikes a better balance between sample efficiency and execution time, outperforming
SymInfer in both metrics. These results emphasize Bitween’s capability to maintain high inference
accuracy while optimizing resource usage. While Bitween successfully identifies all program
properties, Dig failed to solve 8 properties, primarily due to its inability to handle floating-point
types, and SymInfer failed to solve 11 properties, mainly due to its reliance on symbolic execution
and limitations in handling floating-point operations.

6 DISCUSSION

What is the difference between our approach and the existing symbolic regression methods? We
compared the results of Bitween with the symbolic regression backends integrated into our
framework. Traditional genetic programming (GP)-based symbolic regression methods, such as
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Table 3. RSR-Bench: Comparison of Bitween and Bitween-Milp on RSR-Bench (Random Self-Reducible

Benchmarks). Lib.: Selected as a Library function. |𝑄 |: Size of theQuery Class. Sample: Sample Complexity.

# Program Specification L |𝑄 | Bitween-Milp Bitween
Sample Time RSR Sample Time RSR

1 Linear 𝑓 (𝑥 ) = 𝑐𝑥 + 𝑎 Y 5 10/10 0.13 ✓ 10/10 1.52 ✓

2 Exp ℎ (𝑥 ) = 𝑒𝑐𝑥 Y 15 10/10 0.21 ✓ 8/10 2.29 ✓

3 Exp_min_one 𝑓 (𝑥 ) = 𝑒𝑐𝑥 − 1 Y 15 10/10 0.41 ✓ 8/10 2.49 ✓

4 Exp_divby_x 𝑓 (𝑥 ) = 𝑒𝑥 /𝑥 - 126‡ None 0.48‡ ✗‡ None 92.80‡ ✗‡

5 Exp_divby_x1¶ 𝑓 (𝑥 ) = 𝑒𝑥 /𝑥 - 15 10/10 0.29 ✓𝑅𝑅 8/10 2.80 ✓𝑅𝑅

6 Sum 𝑔 (𝑥, 𝑦) = 𝑥 + 𝑦 Y 6 15/15 0.19 ✓ 10/15 1.84 ✓

7 Mean 𝑓 (𝑥,𝑦,𝑧 ) = (𝑥+𝑦+𝑧 )/3 - 8 15/15 0.18 ✓ 10/15 2.04 ✓

8 Tan 𝑓 (𝑥 ) = tan𝑐𝑥 Y 35† 15/15 32.77† ✓ 8/10 3.86† ✓

9 Cot 𝑓 (𝑥 ) = cot𝑐𝑥 Y 35† 15/15 28.16† ✓ 12/15 2.83† ✓

10 Squared Diff. 𝑓 (𝑥, 𝑦) = 𝑥2 − 𝑦2 - 45† 15/15 45.05† ✓ 13/15 7.08† ✓

11 Inv. Squared 𝑓 (𝑥 ) = 1/𝑥2 - 15 15/15 0.22 ✓ 12/15 2.28 ✓

12 Inverse 𝑓 (𝑥 ) = 𝑐/𝑥 - 15 15/15 0.28 ✓ 15/15 2.25 ✓

13 Inv_add 𝑓 (𝑥 ) = 1/(𝑥 + 1) - 15 15/15 0.18 ✓ 12/15 2.56 ✓

14 Inv_Cot_Add 𝑓 (𝑥 ) = 1/(1 + cot𝑐𝑥 ) - 20 15/15 0.78 ✓ 12/15 3.87 ✓

15 Inv_Tan_Add 𝑓 (𝑥 ) = 1/(1 + tan𝑐𝑥 ) - 20 30/40 0.46 ✓ 30/40 2.73 ✓

16 Inv_Sub 𝑓 (𝑥 ) = 𝑐𝑥/(1 − 𝑐𝑥 ) - 15 15/15 0.30 ✓ 12/15 2.31 ✓

17 Inv_Sub2 𝑓 (𝑥 ) = −𝑐𝑥/(1 − 𝑐𝑥 ) - 15 15/15 0.29 ✓ 12/15 2.75 ✓

18 Cos 𝑓 (𝑥 ) = cos(𝑐𝑥 ) Y 15 15/15 0.29 ✓ 12/15 2.23 ✓

19 Cosh 𝑓 (𝑥 ) = cosh(𝑐𝑥 ) Y 15 15/15 0.25 ✓ 12/15 2.16 ✓

20 Squared 𝑓 (𝑥 ) = 𝑐𝑥2 Y 15 15/15 0.49 ✓ 13/15 2.29 ✓

21 Sin 𝛼 (𝑥 ) = 𝑘 sin𝑐𝑥 Y 15 15/15 0.22 ✓ 12/15 2.69 ✓

22 Sinh 𝑓 (𝑥 ) = 𝑘 sinh𝑐𝑥 Y 15 15/15 0.16 ✓ 12/15 2.14 ✓

23 Cube 𝑓 (𝑥 ) = 𝑥3 - 15 15/15 0.26 ✓ 13/15 2.44 ✓

24 Log 𝑓 (𝑥 ) = log𝑥 Y 4 10/10 0.09 ✓ 10/10 1.60 ✓

25 Sec 𝑓 (𝑥 ) = sec𝑥 Y 35 50/50 1.31 ✓ 40/50 4.25 ✓

26 Csc 𝑓 (𝑥 ) = csc𝑥 Y 70† 100/100 13.94† ✓ 52/100 12.70 ✓

27 Sinc¶ 𝑓 (𝑥 ) = sin𝑥/𝑥 - 56† 50/50 16.48† ✓𝑅𝑅 12/15 8.95 ✓𝑅𝑅

28 Sinc2 𝑓 (𝑥 ) = sin𝑥/𝑥 - 10 15/15 0.12 ✓ 15/15 2.36 ✓

29 Mod 𝑓 (𝑥, 𝑅) = 𝑥 mod 𝑅 - 4 10/10 0.09 ✓ 10/10 1.68 ✓

30 Modular Mult. 𝑓 (𝑥, 𝑦, 𝑅) = (𝑥 ·𝑅 𝑦) - 6 10/10 0.11 ✓ 10/10 1.62 ✓

31 Integer Mult. 𝑓 (𝑥, 𝑦) = 𝑥 · 𝑦 - 6 15/15 0.11 ✓ 15/15 1.59 ✓

32 Tanh 𝑓 (𝑥 ) = 𝐶 tanh𝑐𝑥 Y 35† 100/100 27.72 ✓ 16/20 6.83 ✓

33 Sigmoid** 𝑓 (𝑥 ) = 1/(1 + 𝑒−𝑥 ) - 35†** 100/100 36.02† ✗** 26/30 6.70 ✓

34 Softmax_1 𝑓 (𝑥, 𝑦) = 𝑒𝑥 /(𝑒𝑥 +𝑒𝑦 ) - 15 15/15 0.36 ✓ 15/15 2.56 ✓

35 Softmax_2 𝑓 (𝑥, 𝑦) = 𝑒𝑦/(𝑒𝑥 +𝑒𝑦 ) - 15 15/15 0.36 ✓ 15/15 2.20 ✓

36 Logistic** 𝑓 (𝑥 ) = 1/(1 + 𝑒−2𝑥 ) - 35** 100/100 34.09† ✗** 12/15 2.33 ✓

37 Scaled Logistic 𝑓 (𝑥 ) = 3/(1 + 𝑒−2𝑥 ) - 35** 100/100 24.31† ✓ 25/30 6.23 ✓

38 Square Loss 𝑓 (𝑥 ) = (1 − 𝑥 )2 - 15 15/15 0.49 ✓ 12/15 2.99 ✓

39 Savage Loss¶** 𝑓 (𝑥 ) = 1/(1 + 𝑒𝑥 )2 - 35** 50/50 26.51† ✗** 16/20 4.03 ✓𝑅𝑅

40 Savage Loss¶ 𝑓 (𝑥 ) = 1/(1 + 𝑒𝑥 )2 - 56† 100/100 14.48† ✓𝑅𝑅 40/60 6.23 ✓𝑅𝑅

‡ The MILP solver can quickly detect infeasibility, while the regression-based approach requires full computation to
determine if a model exists within the recovery class, resulting in a longer runtime.
† MILP, in its general form, is an NP-complete problem, whereas regression operates in polynomial time. Consequently,
for benchmarks with high query complexity, regression tends to be more efficient than MILP.
¶ In these benchmarks, the library setting (see Section 4.3) was used.
** Bitween-Milp with different solver backends (Gurobi [Gurobi Optimization 2023], GLPK [Makhorin 2020], and
PuLP [Mitchell et al. 2011]) couldn’t find the correct coefficients for the Sigmoid and Logistic benchmarks, whereas
Bitween was able to successfully learned RSRs for them.

RR Randomized Reductions: Indicates benchmarks where Randomized Self-Reductions could not find a solution within
the given recovery class. Instead, the Library Setting (see Section 4.3) was used.
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Table 4. NLA-DigBench: Comparison with Dig [Nguyen et al. 2014a] and SymInfer [Nguyen et al. 2022] on

NLA-DigBench (Invariant Generation for Integer Benchmarks). L: Trace locations (vtrace). V: Trace variables.

D: Max degree of invariants. T: Type of program (i: integer, d: double, f: float, u: unsigned).

# Program Benchmark Bitween Dig SymInfer
L V D T sample time sample time sample time

1 Bresenham 2 5 2 i ✓ 2112 2.19 ✓ 10712 3.05 ✓ 3836 16.71
2 Cohencu 2 5 3 i ✓ 1556 3.69 ✓ 3760 3.08 ✓ 8881 10.75
3 CohenDiv 3 6 2 i ✓ 96 3.73 ✓ 634 0.98 ✓ 255 19.04
4 Dijkstra 3 5 3 i ✓ 208 6.95 ✓ 301 2.85 ✓ 513 9.57
5 Divbin 3 5 2 i ✓ 90 2.02 ✓ 679 0.92 ✓ 212 6.41
6 Egcd 2 8 2 i ✓ 299 6.59 ✓ 4580 7.81 ✓ 3564 48.91
7 Egcd2 3 10 3 i ✓ 629 9.21 ✓ 4342 43.50 ✓ 11635 72.07
8 Egcd3 4 12 2 i ✓ 562 16.84 ✓§ 2457 3.63 ✓§ 1693 15.05
9 Fermat1 4 5 2 d ✓ 965 4.94 ✓ 9578 1.46 ✗** – 6.09
10 Fermat2 2 5 2 d ✓ 336 5.59 ✓ 2805 1.29 ✓ 157 15.74
11 Freire1_int 1 3 2 i ✓ 175 1.36 ✓ 417 0.64 ✓ 223 5.57
12 Freire1 1 3 2 d ✓ 111 1.42 ✗‡ – 0.45 ✗‡ – 2.09
13 Freire2 1 3 3 d ✓ 39 1.22 ✗‡ – 0.45 ✗‡ – 4.71
14 Geo1 2 4 2 i ✓ 54 2.58 ✓ 140 0.76 ✓ 114 7.05
15 Geo2 2 4 2 i ✓ 60 2.66 ✓ 140 0.75 ✓ 115 6.69
16 Geo3 2 5 3 i ✓ 166 5.77 ✗ 159 0.49 ✗ 438 10.78
17 Hard 3 6 2 i ✓ 44 3.35 ✓ 659 1.07 ✓ 264 7.01
18 Knuth* 2 8 3 u ✓ 144 21.99 ✗¶ – 1.16 ✗† – 5.43
19 Lcm1 3 6 2 i ✓ 238 3.41 ✗ 4253 1.16 ✗† – 5.26
20 Lcm2 2 6 2 i ✓ 153 2.38 ✓ 4881 1.84 ✗† 1719 43.40
21 Mannadiv 2 5 2 i ✓ 1230 2.42 ✓ 10586 1.59 ✓ 2916 7.20
22 Prod4br 2 6 2 i ✓ 127 2.26 ✓ 810 5.22 ✓ 1056 49.30
23 Prodbin 2 5 2 d ✓ 95 2.21 ✓ 790 0.94 ✓ 256 23.52
24 Ps1 1 3 1 i ✓ 1128 1.39 ✓ 3950 0.68 ✗† – 5.19
25 Ps2 2 3 2 i ✓ 35 1.88 ✓ 228 0.62 ✓ 324 6.67
26 Ps3 2 3 3 i ✓ 164 2.56 ✓ 228 0.77 ✓ 324 6.67
27 Ps4 2 3 4 i ✓ 223 2.63 ✓ 228 1.07 ✓ 468 7.44
28 Ps5 2 3 5 i ✓∥ 154 11.36 ✓ 154 1.25 ✓ 251 7.19
29 Ps6 2 3 6 i ✓∥ 154 22.65 ✓ 229 2.57 ✓ 350 8.05
30 Readers‡‡ 2 6 2 i ✓ 559 4.40 ✗ ? ? ✗†† – 5.19
31 Sqrt 2 4 2 i ✓ 146 2.81 ✓ 281 0.70 ✓ 225 6.08
32 Wensley2 2 7 2 f ✓ 208 7.54 ✗‡ – 0.45 ✗‡ – 2.09
33 z3sqrt 2 4 2 f ✓ 27 3.86 ✗‡ – 0.45 ✗‡ – 2.09
34 isqrt 2 4 2 i ✓ 112 4.71 ✓ 301 4.59 ✓ 324 8.76
‡ DIG could not find invariants due to floating-point operations in the benchmark.
† SymInfer could not handle external function calls, as it requires analyzing symbolic states.
¶ DIG could not call the external sqrt function because it returns floating-point results.
§ DIG and SymInfer did not find all target invariants.
* New invariants for Knuth’s post-conditions were found; these are not reported in the literature.
** SymInfer could not reach the end for these benchmarks.
‡‡ Benchmark includes non-deterministic choices.
†† Symbolic execution failed due to non-determinism.
∥ Due to numerical instability, advanced scaling techniques were applied for Ps5 and Ps6.

PySR [Cranmer et al. 2023] and GPlearn [Arno 2020], face scalability challenges and often fail to
capture certain invariants, particularly when dealing with a high-dimensional feature space or
integer-valued invariants. Symbolic regression methods are designed to explore a wide range of
term compositions, which makes them more general but less efficient for learning randomized
self-reductions and program invariants. In contrast, Bitween focuses exclusively on polynomial
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Bitween’s Inference – degree 2 with 1, x, sin(x), cos(x) – MSE: 0.00

Bitween’s Inference – degree 3 with 1, x, sin(x), cos(x) – MSE: 0.00
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KAN [1,5,1], LBFGS – with symbolic library: x, sin(x) – MSE: 0.06
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Bitween’s Inference – degree 3 with 1, x, sin(x), cos(x) – MSE: 0.00
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Fig. 5. Comparison with Polynomial Interpolation, Spline Interpolation, Multi-Layered Perceptron (MLP)

Regressor, and Kolmogorov-Arnold Networks (KAN) [Liu et al. 2024]. MSE: Mean Squared Error.

interactions of terms, as these are representative of the benchmark suites it targets. While Bitween
has the capacity to handle deeper levels of function composition, this aspect has not been explicitly
evaluated. To provide a fair comparison, we configured symbolic regression methods to include
only multiplication, subtraction, and addition operations. Our experiments demonstrate that the
results obtained using symbolic regression methods are generally less accurate and approximately
100 times slower compared to Bitween.

What is the difference between our approach and existing ML-based regression methods? We
compared our results with those obtained from Polynomial Interpolation, Spline Interpolation,
Multi-Layered Perceptron (MLP) Regressor, and Kolmogorov-Arnold Networks (KAN) [Liu et al.
2024]. Figure5 illustrates the performance of these methods alongside Bitween in regressing the
function 𝑓 (𝑥) = 𝑥 sin𝑥 . The MLP Regressor, while accurate, lacks interpretability and requires
a large dataset to fit the model effectively. Polynomial regression, though interpretable, is less
accurate and prone to instability when using high-degree polynomials, particularly for extrapolation
beyond the fitted data range. B-spline interpolation offers improved accuracy with an increased
number of knots but remains uninterpretable. KAN provides both interpretability and accuracy
for fitting data; however, its symbolic interpretation requires manual analysis and lacks scalability.
We integrated the KAN regressor into Bitween by removing steps 5 and 6 and attaching the
KAN regressor, but its performance was slow, and the symbolic interpretation was only partially
accurate. Generally, ML methods yield black-box models with high predictive power but limited
interpretability. In contrast, our method produces a symbolic model that is both interpretable and
capable of elucidating the underlying relationships within the data.

How do we handle extrapolation? Is the model robust to unseen data? We focus primarily on
continuous functions rather than piecewise functions. If the model can predict without errors, it
remains robust to unseen data. We expect users to have prior domain knowledge about the function.
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7 RELATEDWORK

Bitween uses dynamic analysis to discover challenging functional equations for programs. This
line of dynamic invariant generation work is pioneered by the Daikon system [Ernst et al. 2007],
which demonstrated that program properties can be inferred by observing concrete program states.
Daikon used a template-based approach to define candidate invariants and, to mitigate cost, a
rather modest set of templates is used that do not capture nonlinear properties.

The most related dynamic invariant generation tool to Bitween is the Dig [Nguyen et al. 2012,
2014b, 2021] approach that focuses on numerical invariants, which include nonlinear equations,
min-max, and octagonal inequalities. Many researchers have built on Dig to infer invariants for
various purposes. For example, Dynamite [Le et al. 2020] uses Dig to infer ranking functions and
recurrent sets to prove/disprove termination and Dynaplex [Ishimwe et al. 2021] extends Dig’s
numerical templates to find recurrent relations.
Bitween is inspired by Daikon and Dig’s dynamic and template approach, but significantly

extends these templates and develops new linear regression based algorithms to learn randomized
reductions and program properties. The resulting properties discovered by Bitween are beyond
the capabilities of existing invariant tools, e.g., both Daikon and Dig cannot generate such complex
functional equations.
In contrast to dynamic inference, static analyses based on the classical abstract interpretation

framework [Cousot 1996; Cousot and Cousot 1992; Miné 2006] generate sound invariants under
abstract domains (e.g., interval, octagonal, and polyhedra domains) to overapproximate program
behaviors to prove the absence of errors [Cousot et al. 2005]. Trade-offs occur between the efficiency
and expressiveness of the considered domains. The work in [Rodríguez-Carbonell and Kapur 2004,
2007] uses the domain of nonlinear polynomial equalities and Gröbner basis to generate equality
invariants. This approach is limited to programs with assignments and loop guards expressible
as polynomial equalities and requires user-supplied bounds on the degrees of the polynomials
to ensure termination. Similarly, Sankaranarayanan et al. [2004] reduces the nonlinear invariant
generation problem to a parametric linear constraint-solving problem using Gröbner bases, but
the method is manually demonstrated only on a few examples. The complexity of Gröbner basis
computation in the worst case is doubly exponential in the number of variables [Bardet et al. 2015;
Dubé 1990]. Various algorithms like Faugère’s F4/F5 [Faugere 1999, 2002] and M4GB [Makarim and
Stevens 2017] have been proposed to obtain Gröbner bases in better runtime. Recently, Kera et al.
[2023] introduced a new direction by employing Transformer-based models to compute Gröbner
bases. This machine learning approach approximates reduction steps in Gröbner basis computation.
While the outputs may be incorrect or incomplete, it is an interesting direction to revisit Gröbner
basis-based approaches in settings where verification of generated properties is feasible.
Many static analyses generate invariants to prove given program specifications, and thus can

exploit the given specifications to guide the invariant inference process. PIE [Padhi et al. 2016]
and ICE [Garg et al. 2016] use CEGIR approach to learn invariants to prove given assertions. For
efficiency, they focus on octagonal predicates and only search for invariants that are boolean
combinations of octagonal relations (thus do not infer nonlinear invariants in this paper). The
data-driven approach G-CLN [Yao et al. 2020] uses gated continuous neural networks to learn
numerical loop invariants from program traces and uses Z3 to check inductive loop invariants.
Due to their purpose, these approaches (PIE, ICE, G-CLN) cannot generate strong invariants unless
they are provided with sufficiently strong goals (e.g., given postconditions), G-CLN also relies on
substantial problem-specific customizations to generate invariants.
All these approaches are not capable of learning randomized (self)-reductions and program

invariants in mixed integer and floating-point programs.
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8 CONCLUSION

In this paper, we present Bitween, a novel approach to automating the discovery of complex
program properties through a linear regression-based learning method. First, Bitween lever-
ages a polynomial time optimization method, linear regression to effectively infer randomized
self-reductions and diverse program invariants, such as loop invariants and postconditions, in
mixed-integer and floating-point programs. Furthermore, we establish a comprehensive theoretical
framework for learning these reductions, contributing to the formal understanding of randomized
self-reducibility. Additionally, we introduce the RSR-Bench benchmark suite, featuring a range of
mathematical functions used in scientific and machine learning contexts, allowing us to systemati-
cally evaluate Bitween’s capabilities. Our empirical analysis demonstrates Bitween outperforms
state-of-the-art tools, such as Dig [Nguyen et al. 2014a] and SymInfer [Nguyen et al. 2022] in terms
of capability, runtime, and sample efficiency. Lastly, Bitween, along with all benchmark data, is
available as an open-source package, accessible via a user-friendly web interface that supports C
language program inputs (see https://bitween.fun).
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A PROOFS

Proof of Claim 6. Suppose 𝐹 ⊆ RSR𝑘 (𝑄, 𝑃) is PAC-learnablewith sample complexity𝑚PAC (𝜀, 𝛿)
and learner ΛPAC. To RSR-learn 𝐹 with errors (𝜌, 𝜉, 𝛿), we let 𝜀 = min(𝜌/𝑘, 𝜉) and draw 𝑚 =

𝑚PAC (𝜀, 𝛿) labeled samples (𝑥𝑖 , 𝑓 (𝑥𝑖 ))𝑚𝑖=1. The RSR-learner is described in Algorithm 2. For sim-
plicity of notation, we will omit the input length 𝑛; following this proof is a brief discussion of
Algorithm 2’s inefficiency with respect to 𝑛.

At a high level, the learner invokes ΛPAC to obtain a hypothesis 𝑓 ∈ 𝐹 that, is 𝜀-close to the
ground truth function 𝑓 (with probability ≥ 1 − 𝛿 over the samples). It then uses 𝑓 to exhaustively
search through possible query functions 𝑞1, . . . , 𝑞𝑘 ∈ 𝑄 and recovery functions 𝑝 ∈ 𝑃 , until it finds
those that are a perfect RSR for 𝑓 .
To conclude the proof, we will show that, because 𝑓 is 𝜀-close to 𝑓 , then (𝑞1, . . . , 𝑞𝑘 , 𝑝) is a
(𝜌, 𝜉)-RSR for 𝑓 .
We say that 𝑥 ∈ 𝑋 is good if 𝑓 (𝑥) = 𝑓 (𝑥). By choice of 𝜀, we know that there are at least
(1 − 𝜀) |𝑋 | ≥ (1 − 𝜉) |𝑋 |. It therefore suffices to show that for all good 𝑥 ,

Pr
𝑟∼𝑅

[
𝑓 (𝑥) = 𝑝 (𝑥, 𝑟 𝑓 (𝑢1), . . . , 𝑓 (𝑢𝑘 ))
where ∀𝑖 ∈ [𝑘] 𝑢𝑖 B 𝑞𝑖 (𝑥, 𝑟 )

]
≥ 1 − 𝜀 · 𝑘 ≥ 1 − 𝜌.

https://doi.org/10.1137/S0097539797328847
https://doi.org/10.1145/1968.1972
http://dl.acm.org/citation.cfm?id=92659


Learning Randomized Reductions and Program Properties 25

Algorithm 2: RSR-learning via PAC-learning.
Input: Query class 𝑄 , recovery class 𝑃 , and hypothesis class 𝐹 ⊆ RSR𝑘 (𝑄, 𝑃). Query complexity

𝑘 and randomness domain 𝑅. Uniform PAC-learner ΛPAC for 𝐹 . Labeled samples
(𝑥𝑖 , 𝑦𝑖 )𝑚𝑖=1.

Output: Query functions 𝑞1, . . . , 𝑞𝑘 ∈ 𝑄 and recovery function 𝑝 ∈ 𝑃 .
1 Invoke ΛPAC on samples (𝑥𝑖 , 𝑦𝑖 )𝑚𝑖=1 to obtain a hypothesis 𝑓 ∈ 𝐹 .
2 foreach Query functions (𝑞1, . . . , 𝑞𝑘 ) ∈ 𝑄𝑘 and recovery function 𝑝 ∈ 𝑃 do
3 foreach 𝑥 ∈ 𝑋 and 𝑟 ∈ 𝑅 do
4 Compute 𝑢𝑖 B 𝑞𝑖 (𝑥, 𝑟 ) for each 𝑖 ∈ [𝑘].
5 if 𝑓 (𝑥) ≠ 𝑝 (𝑥, 𝑟, 𝑓 (𝑢1), . . . , 𝑓 (𝑢𝑘 )) then
6 Go to line 2. # Continue to the next 𝑞1, . . . , 𝑞𝑘 , 𝑝.

7 Output (𝑞1, . . . , 𝑞𝑘 , 𝑝) B (𝑞1, . . . , 𝑞𝑘 , 𝑝).
8 Output ⊥.

The right inequality is by choice of 𝜀 ≤ 𝜌/𝑘 . For the left inequality,

Pr
𝑟∼𝑅

[
𝑓 (𝑥) = 𝑝 (𝑥, 𝑟 𝑓 (𝑢1), . . . , 𝑓 (𝑢𝑘 ))
where ∀𝑖 ∈ [𝑘] 𝑢𝑖 B 𝑞𝑖 (𝑥, 𝑟 )

]
≥

Pr
𝑟∼𝑅

[
𝑓 (𝑢1) = 𝑓 (𝑢1), . . . , 𝑓 (𝑢𝑘 ) = 𝑓 (𝑢𝑘 )
where ∀𝑖 ∈ [𝑘] 𝑢𝑖 B 𝑞𝑖 (𝑥, 𝑟 )

]
≥

1 − 𝑘 · Pr
𝑥∼𝑋

[
𝑓 (𝑥) ≠ 𝑓 (𝑥)

]
≥ 1 − 𝑘 · 𝜀.

Here, the first inequality is because (𝑞1, . . . , 𝑞𝑘 , 𝑝) is a perfect RSR for 𝑓 , the second is by a union
bound and the fact that each 𝑢𝑖 is distributed uniformly in 𝑋 (Definition 1), and the last is because
𝑓 is 𝜀-close to 𝑓 .

□

Note that, as mentioned in Claim 6, the running time of the RSR-learner is not bounded by a
polynomial in the number of samples𝑚. In more detail, we denote
• 𝑇PAC (𝑚): an upper-bound on the running time of the PAC learner ΛPAC as a function of the
number of samples𝑚 =𝑚PAC (min(𝜌/𝑘, 𝜉), 𝛿).
• 𝑇𝑄 (𝑛) (resp. 𝑇𝑃 (𝑛)): an upper-bound on the running time of query functions 𝑞 ∈ 𝑄 (resp.
recovery function 𝑝 ∈ 𝑃 ) as a function of the input length 𝑛 = |𝑥 |.

Then the running time of the RSR-learner is

𝑂

(
𝑇PAC (𝑚) + |𝑄𝑛 |𝑘 · |𝑃𝑛 | · |𝑋𝑛 | · |𝑅𝑛 | · (𝑘 ·𝑇𝑄 (𝑛) +𝑇𝑃 (𝑛))

)
.

In particular, |𝑋𝑛 | typically grows exponentially in 𝑛. Therefore, even if the PAC learner were
efficient, the RSR-learner will not be efficient.

Proof sketch of Claim 7. We will show a setting in which an RSR is “learnable” without any
samples (𝑚 ≡ 0). However, without samples it will not be possible to PAC learn a hypothesis for 𝑓 .
Consider the RSR that captures the so-called BLR relation 𝑔(𝑧) = 𝑔(𝑧 + 𝑥) − 𝑔(𝑥) for Boolean

functions𝑔 : Fℓ2 → F2 [Blum et al. 1993]. Indeed, this relation characterizes ℓ-variate linear functions
over F2. In a nutshell, we will choose our reduction class (𝑄, 𝑃) to consist only of the reduction
specified by the BLR relation, and the hypothesis class 𝐹 to consist of all linear functions. Then, a
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(𝑄, 𝑃)-RSR2 learner for 𝐹 will always output the BLR relation, but on the other hand, PAC learning
𝐹 requires a superconstant number of samples. Details follow.
We choose the input and randomness domains to be 𝑋𝑛 B 𝑅𝑛 B F

𝑛
2 , and the range 𝑌𝑛 = F2. The

query class 𝑄𝑛 consists of just two query functions

𝑄𝑛 = {𝑞𝑛, 𝑞′𝑛} where 𝑞𝑛, 𝑞′𝑛 : F
𝑛
2 × F𝑛2 → F𝑛2 ,

𝑞𝑛 (𝑥, 𝑟 ) B 𝑥 + 𝑟,
𝑞′𝑛 (𝑥, 𝑟 ) B 𝑟 .

The recovery class 𝑃𝑛 is the singleton 𝑃𝑛 = {𝑝𝑛} where 𝑝𝑛 (𝑥, 𝑟,𝑦,𝑦′) B 𝑦 − 𝑦′. Indeed, the trivial
algorithm that takes no samples and outputs (𝑞, 𝑞′, 𝑝) is a (𝑄, 𝑃)-RSR2 learner for any linear function
𝑓 : F𝑛2 → F2.
On the other hand, fix 𝜀 < 1/2, 𝛿 < 1/2 and number of samples𝑚 < 𝑛. Given𝑚 labeled samples
(𝑥𝑖 , 𝑓 (𝑥𝑖 ))𝑚𝑖=1, there exists another linear function 𝑓 ′ ≠ 𝑓 such that 𝑓 ′ (𝑧𝑖 ) = 𝑓 (𝑧𝑖 ) for all 𝑖 ∈ [𝑚].
The learner cannot do better than guess between 𝑓 and 𝑓 ′ uniformly at random , in which case it
outputs 𝑓 ′ with probability 1/2. Lastly, we note that any two different linear functions agree on
exactly 1/2 of the inputs in F𝑛2 , therefore

Pr
𝑥∼𝑋
[𝑓 (𝑥) = 𝑓 ′ (𝑥)] ≥ 1 − 𝜀 ⇐⇒ 𝑓 = 𝑓 ′ .

All in all, we have

Pr
𝑥1,...,𝑥𝑚∼𝑋

𝑓←Λ(𝑥1,𝑓 (𝑥1 ),...,𝑥𝑚,𝑓 (𝑥𝑚 ) )

[
Pr
𝑥∼𝑋
[𝑓 (𝑥) = 𝑓 (𝑥)] ≥ 1 − 𝜀

]
= Pr

𝑥1,...,𝑥𝑚∼𝑋
𝑓←Λ(𝑥1,𝑓 (𝑥1 ),...,𝑥𝑚,𝑓 (𝑥𝑚 ) )

[
𝑓 = 𝑓

]
≤ 1/2 < 1−𝛿.

□

B GENERAL DEFINITIONS

Definition 9 (Randomized reduction). Let

𝑓 : 𝑋 → 𝑌 (Source function)

𝑔1, . . . , 𝑔𝑘 : 𝑈 → 𝑉 (Target functions)

𝑞1, . . . , 𝑞𝑘 : 𝑋 × 𝑅 → 𝑈 (Query functions)

𝑝 : 𝑋 × 𝑅 ×𝑉 𝑘 → 𝑌 (Recovery function)

such that𝑈 and𝑉 are uniformly-samplable, and for all 𝑖 ∈ [𝑘] and 𝑥 ∈ 𝑋 , 𝑢𝑖 B 𝑞𝑖 (𝑥, 𝑟 ) is distributed
uniformly over𝑈 when 𝑟 ∼ 𝑅 is sampled uniformly at random.
We say that (𝑞1, . . . , 𝑞𝑘 , 𝑝) is a perfect randomized reduction (RR) from 𝑓 to (𝑔1, . . . , 𝑔𝑘 ) with 𝑘

queries and log2 |𝑅 | random bits if for all 𝑥 ∈ 𝑋 and 𝑟 ∈ 𝑅, letting 𝑢𝑖 B 𝑞𝑖 (𝑥, 𝑟 ) for all 𝑖 ∈ [𝑘], the
following holds:

𝑓 (𝑧) = 𝑝 (𝑧, 𝑟, 𝑔1 (𝑢1), . . . , 𝑔𝑘 (𝑢𝑘 )) . (3)
In other words, if Equation (3) holds with probability 1 over randomly sampled 𝑟 ∈ 𝑅.
For errors 𝜌, 𝜉 ∈ (0, 1), we say that (𝑞1, . . . , 𝑞𝑘 , 𝑟 ) is a (𝜌, 𝜉)-approximate randomized reduction

((𝜌, 𝜉)-RR) from 𝑓 to (𝑔1, . . . , 𝑔𝑘 ) if, for all but a 𝜉-fraction of 𝑥 ∈ 𝑋 , Equation (3) holds with probability
≥ 1 − 𝜌 over the random samples 𝑟 ∼ 𝑅. That is,

Pr
𝑥∼𝑋

[
Pr
𝑟∼𝑅

[
𝑓 (𝑥) = 𝑝 (𝑥, 𝑟, 𝑔1 (𝑢1), . . . , 𝑔𝑘 (𝑢𝑘 ))
where ∀𝑖 ∈ [𝑘] 𝑢𝑖 B 𝑞𝑖 (𝑥, 𝑟 )

]
≥ 1 − 𝜌

]
≥ 1 − 𝜉 .

Definition 1 is derived from Definition 9 by making the following restrictions:
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• Letting 𝑋 = 𝑈 , 𝑌 = 𝑉 , and 𝑓 = 𝑔1 = · · · = 𝑔𝑘 . This is called a randomized self-reduction (RSR)
for 𝑓 .
• Considering a randomness-oblivious recovery function which take as input the queries
𝑢1, . . . , 𝑢𝑘 instead of the randomness 𝑟 used to generate these queries. That is, letting
𝑝 : 𝑋 × (𝑋 × 𝑌 )𝑘 → 𝑌 .8
• Letting the randomness domain 𝑅 consist of 𝑛 uniformly random samples from 𝑋 , i.e.,
𝑅 = 𝑋𝑛 .

Table 5. RSR-Bench: Specifications and Learned Randomized (Self)-Reductions

# Specification RSR Properties
1 𝑓 (𝑥 ) = 𝑐𝑥 + 𝑎 𝑓 (𝑥 + 𝑟 ) = 𝑓 (𝑥 ) + 𝑓 (𝑟 )
2 ℎ (𝑥 ) = 𝑒𝑐𝑥 ℎ (𝑥 + 𝑟 ) = ℎ (𝑥 )ℎ (𝑟 ) and ℎ (𝑥 + 𝑟 )ℎ (𝑥−𝑟 ) = ℎ (𝑥 )2
3 𝑓 (𝑥 ) = 𝑒𝑐𝑥 − 1 𝑓 (𝑥 + 𝑟 ) = 𝑓 (𝑥 ) + 𝑓 (𝑟 ) + 𝑓 (𝑥 ) 𝑓 (𝑟 )
4 𝑓 (𝑥 ) = 𝑒𝑥 /𝑥 RSR not found
5 𝑓 (𝑥 ) = 𝑒𝑥 /𝑥 𝑓 (𝑥 + 𝑟 ) = ℎ (𝑥 )ℎ (𝑟 )/𝑔 (𝑥, 𝑟 )
6 𝑔 (𝑥, 𝑦) = 𝑥 + 𝑦 𝑔 (𝑥 + 𝑟, 𝑦 + 𝑠 ) = 𝑔 (𝑥, 𝑦) + 𝑔 (𝑟, 𝑠 )
7 𝑓 (𝑥,𝑦,𝑧 ) = (𝑥+𝑦+𝑧 )/3 𝑓 (𝑥1 + 𝑥2 + 𝑥3, 𝑦1 + 𝑦2 + 𝑦3, 𝑧1 + 𝑧2 + 𝑧3 ) − 𝑓 (𝑥1, 𝑦1, 𝑧1 ) − 𝑓 (𝑥2, 𝑦2, 𝑧2 ) − 𝑓 (𝑥3, 𝑦3, 𝑧3 )
8 𝑓 (𝑥 ) = tan𝑐𝑥 𝑓 (𝑥 + 𝑟 ) = (𝑓 (𝑥 ) + 𝑓 (𝑟 ) )/(1− 𝑓 (𝑥 ) 𝑓 (𝑟 ) )
9 𝑓 (𝑥 ) = cot𝑐𝑥 𝑓 (𝑥 + 𝑟 ) = (𝑓 (𝑥 ) 𝑓 (𝑟 ) − 1)/(𝑓 (𝑥 ) + 𝑓 (𝑟 ) )
10 𝑓 (𝑥, 𝑦) = 𝑥2 − 𝑦2 𝑓 (𝑥−𝑟, 𝑦−𝑠 ) = 𝑓 (𝑟 + 𝑥, 𝑦−𝑠 ) −2𝑓 (𝑟 + 𝑥, 𝑦) − 𝑓 (𝑥, 𝑦−𝑟 ) − 𝑓 (𝑥, 𝑟 + 𝑦) + 4𝑓 (𝑥, 𝑦)
11 𝑓 (𝑥 ) = 1/𝑥2 𝑓 (𝑥 + 𝑟 ) = (2𝑓 (𝑥 ) 𝑓 (𝑟 ) − 𝑓 (𝑥 ) 𝑓 (𝑥−𝑟 ) − 𝑓 (𝑟 ) 𝑓 (𝑥−𝑟 ) )/(𝑓 (𝑥 ) + 𝑓 (𝑟 ) −8𝑓 (𝑥−𝑟 ) )
12 𝑓 (𝑥 ) = 𝑐/𝑥 𝑓 (𝑥 ) 𝑓 (𝑥 + 𝑟 ) − 𝑓 (𝑥 ) 𝑓 (𝑟 ) + 𝑓 (𝑥 + 𝑟 ) 𝑓 (𝑟 ) = 0
13 𝑓 (𝑥 ) = 1/(𝑥 + 1) 𝑓 (𝑥 + 𝑟 ) = 𝑓 (𝑥 ) 𝑓 (𝑥−𝑟 )/(−𝑓 (𝑥 ) + 2𝑓 (𝑥−𝑟 ) )
14 𝑓 (𝑥 ) = 1/(1 + cot𝑐𝑥 ) 𝑓 (𝑥 + 𝑟 ) = (𝑓 (𝑥 ) + 𝑓 (𝑟 ) −2𝑓 (𝑥 ) 𝑓 (𝑟 ) )/(1−2𝑓 (𝑥 ) 𝑓 (𝑟 ) )
15 𝑓 (𝑥 ) = 1/(1 + tan𝑐𝑥 ) 𝑓 (𝑥 + 𝑟 ) = (𝑓 (𝑥 ) + 𝑓 (𝑟 ) −1)/(2𝑓 (𝑥 ) + 2𝑓 (𝑟 ) −2𝑓 (𝑥 ) 𝑓 (𝑟 ) −1)
16 𝑓 (𝑥 ) = 𝑐𝑥/(1 − 𝑐𝑥 ) 𝑓 (𝑥 + 𝑟 ) = (𝑓 (𝑥 ) + 𝑓 (𝑟 ) + 2𝑓 (𝑥 ) 𝑓 (𝑟 ) )/(1− 𝑓 (𝑥 ) 𝑓 (𝑟 ) )
17 𝑓 (𝑥 ) = −𝑐𝑥/(1 − 𝑐𝑥 ) 𝑓 (𝑥 + 𝑟 ) = (𝑓 (𝑥 ) + 𝑓 (𝑟 ) − 2𝑓 (𝑥 ) 𝑓 (𝑟 ) )/(1− 𝑓 (𝑥 ) 𝑓 (𝑟 ) )
18 𝑓 (𝑥 ) = cos(𝑐𝑥 ) 𝑓 (𝑥 + 𝑟 ) + 𝑓 (𝑥−𝑟 ) = 2𝑓 (𝑥 ) 𝑓 (𝑟 ) ; 𝑓 (𝑥 + 𝑟 ) = 𝑓 (𝑥 ) 𝑓 (𝑟 ) −

√︁
1− 𝑓 (𝑥 )2

√︁
1− 𝑓 (𝑟 )2

19 𝑓 (𝑥 ) = cosh(𝑐𝑥 ) 𝑓 (𝑥 + 𝑟 ) + 𝑓 (𝑥−𝑟 ) = 2𝑓 (𝑥 ) 𝑓 (𝑟 ) ; 𝑓 (𝑥 + 𝑟 ) = 𝑓 (𝑥 ) 𝑓 (𝑟 ) +
√︁
𝑓 (𝑥 )2−1

√︁
𝑓 (𝑟 )2−1

20 𝑓 (𝑥 ) = 𝑐𝑥2 𝑓 (𝑥 + 𝑟 ) + 𝑓 (𝑥−𝑟 ) = 2𝑓 (𝑥 ) + 2𝑓 (𝑟 )
21 𝛼 (𝑥 ) = 𝑘 sin𝑐𝑥 𝛼 (𝑥 + 𝑟 ) = (𝛼 (𝑥 )2−𝛼 (𝑟 )2 )/𝛼 (𝑥−𝑟 )
22 𝑓 (𝑥 ) = 𝑘 sinh𝑐𝑥 𝑓 (𝑥 + 𝑟 ) = (𝑓 (𝑥 )2− 𝑓 (𝑟 )2 )/𝑓 (𝑥−𝑟 )
23 𝑓 (𝑥 ) = 𝑥3 𝑓 (𝑥 + 𝑟 ) = (4𝑓 (𝑥 )2− 𝑓 (𝑥−𝑟 ) (𝑓 (𝑥 ) + 𝑓 (𝑟 ) ) −4𝑓 (𝑟 )2 )/(𝑓 (𝑥 ) − 𝑓 (𝑟 ) + 2𝑓 (𝑥−𝑟 ) )
24 𝑓 (𝑥 ) = log𝑥 𝑓 (𝑥𝑟 ) = 𝑓 (𝑥 ) + 𝑓 (𝑟 )
25 𝑓 (𝑥 ) = sec𝑥 𝑓 (𝑥 ) 𝑓 (𝑥 + 𝑟 ) 𝑓 (𝑟 ) + 𝑓 (𝑥 ) 𝑓 (𝑥−𝑟 ) 𝑓 (𝑟 ) −2𝑓 (𝑥 + 𝑟 ) 𝑓 (𝑥−𝑟 ) = 0
26 𝑓 (𝑥 ) = csc𝑥 𝑓 (𝑥 )2 𝑓 (𝑥 + 𝑟 ) 𝑓 (𝑥−𝑟 ) + 𝑓 (𝑥 )2 𝑓 (𝑟 )2− 𝑓 (𝑥 + 𝑟 ) 𝑓 (−𝑟 ) 𝑓 (𝑟 )2 = 0
27 𝑓 (𝑥 ) = sin𝑥/𝑥 𝑓 (𝑥 + 𝑟 ) = (𝛼 (𝑥 )2−𝛼 (𝑟 )2 )/(𝑔 (𝑥, 𝑟 )𝛼 (𝑥−𝑟 ) )
28 𝑓 (𝑥 ) = sin𝑥/𝑥 𝑓 (𝑥 + 𝑟 ) = 𝛼 (𝑥, 𝑟 )/𝑔 (𝑥, 𝑟 )
29 𝑓 (𝑥, 𝑅) = 𝑥 mod 𝑅 𝑓 (𝑥 + 𝑟 ) = 𝑓 (𝑥 ) +𝑅 𝑓 (𝑟 )
30 𝑓 (𝑥, 𝑦, 𝑅) = (𝑥 ·𝑅 𝑦) 𝑓 (𝑥+𝑟, 𝑦+𝑠 ) = 𝑓 (𝑟, 𝑠 ) +𝑅 𝑓 (𝑟, 𝑦) +𝑅 𝑓 (𝑥, 𝑠 ) +𝑅 𝑓 (𝑥, 𝑦)
31 𝑓 (𝑥, 𝑦) = 𝑥 · 𝑦 𝑓 (𝑥+𝑟, 𝑦+𝑠 ) = 𝑓 (𝑟, 𝑠 ) + 𝑓 (𝑟, 𝑦) + 𝑓 (𝑥, 𝑠 ) + 𝑓 (𝑥, 𝑦)
32 𝑓 (𝑥 ) = 𝐶 tanh𝑐𝑥 𝑓 (𝑥 + 𝑟 ) = 𝑓 (𝑥 ) + 𝑓 (𝑟 )/(1 + (𝑓 (𝑥 ) 𝑓 (𝑟 )/𝐶2 ) )
33 𝑓 (𝑥 ) = 1/(1 + 𝑒−𝑥 ) 𝑓 (𝑥−𝑟 ) = 𝑓 (𝑥 ) (𝑓 (𝑟 ) −1)/(2𝑓 (𝑥 ) 𝑓 (𝑟 ) − 𝑓 (𝑥 ) − 𝑓 (𝑟 ) )
34 𝑓 (𝑥, 𝑦) = 𝑒𝑥 /(𝑒𝑥 +𝑒𝑦 ) 𝑓 (𝑥, 𝑦) = 𝑓 (𝑟 + 𝑥, 𝑟 + 𝑦)
35 𝑓 (𝑥, 𝑦) = 𝑒𝑦/(𝑒𝑥 +𝑒𝑦 ) 𝑓 (𝑥, 𝑧 ) = 𝑓 (𝑥 + 𝑦, 𝑦 + 𝑧 )
36 𝑓 (𝑥 ) = 1/(1 + 𝑒−2𝑥 ) 𝑓 (𝑥 + 𝑟 ) = (−𝑓 (𝑥 ) 𝑓 (𝑥−𝑟 ) + 𝑓 (𝑥 ) − 𝑓 (𝑟 ) 𝑓 (𝑥−𝑟 ) )/(𝑓 (𝑥 ) − 𝑓 (𝑟 ) −2𝑓 (𝑥−𝑟 ) + 1)
37 𝑓 (𝑥 ) = 3/(1 + 𝑒−2𝑥 ) 𝑓 (𝑥 + 𝑟 ) = (−𝑓 (𝑥 ) 𝑓 (𝑥−𝑟 ) + 3𝑓 (𝑥 ) − 𝑓 (𝑟 ) 𝑓 (𝑥−𝑟 ) )/(𝑓 (𝑥 ) − 𝑓 (𝑟 ) −2𝑓 (𝑥−𝑟 ) + 3)
38 𝑓 (𝑥 ) = (1 − 𝑥 )2 𝑓 (𝑥 + 𝑟 ) = ±4

√︁
𝑓 (𝑥 ) 𝑓 (𝑥−𝑟 ) + 4𝑓 (𝑥 ) + 𝑓 (𝑥−𝑟 )

39 𝑓 (𝑥 ) = 1/(1 + 𝑒𝑥 )2 𝑓 (𝑥 + 𝑟 ) = 1/(ℎ (𝑥, 𝑟 )2 + 2ℎ (𝑥, 𝑟 ) + 1)
40 𝑓 (𝑥 ) = 1/(1 + 𝑒𝑥 )2 𝑓 (𝑥 + 𝑟 ) = 1/(ℎ (𝑥 )2ℎ (𝑟 )2 + 2ℎ (𝑥 )ℎ (𝑟 ) + 1)

8Tedious comment: For simplicity of notation, we also rearrange the inputs of 𝑝 from 𝑋 × 𝑋𝑘 × 𝑌𝑘 to 𝑋 × (𝑋 × 𝑌 )𝑘 .
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𝐹 [𝑥, 𝑦 ] = 𝐹 [𝑦, 𝑥 ] (Commutativity)
𝐹 [𝑘 · 𝑥, 𝑘 · 𝑦 ] = 𝑘 · 𝐹 [𝑥, 𝑦 ] (Multiplicative)

𝐹 [𝑥, 𝑥 ] = 𝑥 (Idempotency)
𝐹 [𝑥 ] = 𝐹 [−𝑥 ] (Even)
𝐹 [𝑥 ] = −𝐹 [−𝑥 ] (Odd)

𝐹 [𝑥 + 𝑛𝑃 ] = 𝐹 [𝑥 ] (Periodic)
𝐹 [𝑥 + 𝑦 ] = 𝐹 [𝑥 ] + 𝐹 [𝑦 ] (Additive)
𝐹 [𝑥 + 𝑦 ] = 𝐹 [𝑥 ]𝐹 [𝑦 ] (Exponential)

𝐹 [𝑥𝑦 ] = 𝐹 [𝑥 ] + 𝐹 [𝑦 ] (Logarithmic)
𝐹 [𝑥𝑦 ] = 𝐹 [𝑥 ]𝐹 [𝑦 ] (Multiplicative)
𝐹 [𝑥, 𝑧 ] = 𝐹 [𝑥, 𝑦 ] + 𝐹 [𝑦, 𝑧 ] (Cyclic)

Table 6. Some Functional Equations

𝐹 [𝐹 (𝑥,𝑢 ), 𝑣 ] = 𝐹 (𝑥,𝑢 + 𝑣) (Translation)
𝐹 [𝐹 (𝑥, 𝑦), 𝑧 ] = 𝐹 [𝑥, 𝐹 (𝑦, 𝑧 ) ] (Associativity)

𝐹 [𝐹 (𝑥, 𝑧 ), 𝐹 (𝑦, 𝑧 ) ] = 𝐹 (𝑥, 𝑦) (Transitivy)
𝐹 [𝐹 (𝑥, 𝑦), 𝐹 (𝑢, 𝑣) ] = 𝐹 [𝐹 (𝑥,𝑢 ), 𝐹 (𝑦, 𝑣) ] (Bisymmetry)

𝐹 [𝑥, 𝐹 (𝑦, 𝑧 ) ] = 𝐹 [𝐹 (𝑥, 𝑦), 𝐹 (𝑥, 𝑧 ) ] (Autodistributive I)
𝐹 [𝐹 (𝑥, 𝑦), 𝑧 ] = 𝐹 [𝐹 (𝑥, 𝑧 ), 𝐹 (𝑦, 𝑧 ) ] (Autodistributive II)

𝐹 [𝐹 [𝑥 ] ] = 𝑥 (Involution)
𝐹 [𝐹 [𝑥 ] ] = 𝐺 [𝑥 ] (Functional Square Root)
𝐹 [𝑥 + 𝑦 ] = 𝐺 [𝑥 ] +𝐻 [𝑦 ] (Pexider)
𝐹 [𝑥 + 𝑦 ] = 𝐺 [𝑥 ]𝐻 [𝑦 ] (Pexider)

𝐹 [𝑥𝑦 ] = 𝐺 [𝑥 ] +𝐻 [𝑦 ] (Pexider)
𝐹 [𝑥𝑦 ] = 𝐺 [𝑥 ]𝐻 [𝑦 ] (Pexider)

Table 7. Some Composite Functional Equations

C EXAMPLES FOR LEARNING PROGRAM INVARIANTS IN C

Bitween combines machine learning with formal methods to automatically infer randomized
reductions and program invariants. Through random fuzzing and static analysis, it identifies
assertions, deriving loop invariants and post-conditions for C programs. Users instrument their
code by adding functions prefixed with vtrace at key locations, such as after entering loops, to
monitor terms likely to appear in invariants.

For instance, in Figure 6, Bitween aims for learning a loop invariant, by using vtrace1 at line 8
as 𝐹 [𝑋,𝑌, 𝑥,𝑦, 𝑣] = 0, where 𝐹 is an unknown algebraic function. Bitween aims to interpret 𝐹 in
the hypothesis class of polynomials constructed by the terms passed to 𝐹 and bounded up to a
given degree. Additionally, users can include assume statements to refine the analysis, focusing
on specific cases of interest. To infer post-conditions, users can place vtrace calls before function
exits or within function calls, ensuring the invariants are inferred at key points.

For more sophisticated input generation, users can define intervals using the vdistr function to
guide the fuzzing process with uniform distributions as shown in Figure 7a at line 2 and 3.

Although Bitween currently supports only a subset of C, ongoing development will extend it to
handle arrays, pointers, and structs.
In the example programs in Figure 6a and Figure 7a, Bitween starts by using 20 random inputs

to find invariants about the variables. Here’s an overview of two specific examples:
(1) Bresenham’s Line Drawing Algorithm: This algorithm is used to draw lines on a grid,

selecting the best-fitting pixels between two points. In the first version (Figure 6a), the program
is instrumented with vtrace calls to track variables. Bitween processes these traces and infers
invariants about the relationships between variables involved in the line drawing process.
The output (Figure 6b) replaces the vtrace calls with assertions that represent the inferred
invariants, ensuring that the program correctly draws lines under different conditions.

(2) Square Root Computation by Zuse: This example computes square roots using an iterative
method. Although the calculation is approximate, based on a fixed error (‘err = 0.0001‘), Bitween
mathematically finds the correct relationships between the variables. The program is first
instrumented with vtrace calls to track key variables (Figure 7a). Using 20 random inputs,
Bitween analyzes the program and infers the necessary relationships (invariants) between
these variables during computation. The output (Figure 7b) contains the inferred assertions in
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1 int bresenham(int X, int Y) {
2 vdistr(X, 0, 1000);
3 vdistr(Y, 0, 1000);
4 assume(X >= 0);
5
6 int v = 2 * Y - X, x = 0, y = 0;
7 while (1) {
8 vtrace1(X, Y, x, y, v);
9
10 if (!(x <= X)) break;
11 if (v < 0) {
12 v = v + 2 * Y;
13 } else {
14 v = v + 2 * (Y - X); y++;
15 }
16 x++;
17 }
18
19 vtrace2(X, Y, x, y, v);
20 return v;
21 }

(a) Input program instrumented with vtrace1 and
vtrace2.

int bresenham(int X, int Y) {
vdistr(X, 0, 1000);
vdistr(Y, 0, 1000);
assume(X >= 0);

int v = 2 * Y - X, x = 0, y = 0;
while (1) {

assert (2*X*y + X - 2*Y*x - 2*Y + v == 0);

if (!(x <= X)) break;
if (v < 0) {

v = v + 2 * Y;
} else {

v = v + 2 * (Y - X); y++;
}
x++;

}
assert(X - x + 1 == 0);
assert (2*Y*x +2*Y -v -2*x*y -x +2*y +1==0);
return v;

}

(b) Output program with vtrace locations replaced by inferred in-
variants.

Fig. 6. Input and output for Bresenham’s line drawing algorithm, based on Srivastava et al.’s From Program

Verification to Program Synthesis, POPL ’10.

1 float z3sqrt(float a) {
2 assume(a >= 1);
3
4 float x = a;
5 float q = 0.5 * (x + a / x);
6 float err = 0.0001;
7
8 while(x - q > err or q - x > err){
9 vtrace1(a, x, err , q);
10
11 x = q;
12 q = 0.5 * (x + a / x);
13 }
14
15 return q;
16 }

(a) Instrumented input program for computing square roots,
by Zuse.

float z3sqrt(float a) {
assume(a >= 1);

float x = a;
float q = 0.5 * (x + a / x);
float err = 0.0001;

while(x - q > err or q - x > err){
assert(a - 2*q*x + pow(x, 2) == 0);
assert(err == 0);
x = q;
q = 0.5 * (x + a / x);

}

return q;
}

(b) Output program with vtrace replaced by inferred invari-
ants.

Fig. 7. Input and output programs for computing square roots, based on Zuse’s implementation https:
//www.cs.upc.edu/~erodri/webpage/polynomial_invariants/z3sqrt.htm.

place of the vtrace calls, ensuring the correctness of the square root calculation, despite the
approximate nature of the iterative method.

https://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/z3sqrt.htm
https://www.cs.upc.edu/~erodri/webpage/polynomial_invariants/z3sqrt.htm
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