
Information and Software Technology 121 (2020) 106275

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A survey on the practical use of UML for different software architecture

viewpoints

Mert Ozkaya

a , ∗ , Ferhat Erata

b

a Yeditepe University, Istanbul, Turkey
b Yale University, New Haven, CT, USA

a r t i c l e i n f o

Keywords:

Software architecture viewpoints

UML

Survey

Practitioners

a b s t r a c t

Context: Software architecture viewpoints modularize the software architectures in terms of different viewpoints

that each address a different concern. Unified Modeling Language (UML) is so popular among practitioners for

modeling software architectures from different viewpoints.

Objective: In this paper, we aimed at understanding the practitioners’ UML usage for the modeling of software

architectures from different viewpoints.

Method: To this end, 109 practitioners with diverse profiles have been surveyed to understand practitioners’

UML usage for six different viewpoints: functional, information, concurrency, development, deployment, and

operational. Each viewpoint has been considered in terms of a set of software models that can be created in that

viewpoint.

Results: The survey includes 35 questions for different viewpoint models, and the results lead to interesting

findings. While the top popular viewpoints for the UML-based software architecture modeling are the functional

(96%) and information (99%) viewpoints, the least popular one is the operational viewpoint that is consid-

ered by 26% of the practitioners. The top popular UML modeling tool is Enterprise Architect regardless of the

viewpoints considered. Concerning the software models that can be created in each viewpoint, UML’s class dia-

gram is practitioners’ top choice for the functional structure (71%), data structure (85%), concurrency structure

(75%), software code structure (34%), and system installation (39%), and system support (16%) models; UML’s

sequence diagram is the top choice for the data lifecycle models (47%); UML’s deployment diagram for the phys-

ical structure (71%), mapping between the functional and physical components (53%), and system migration

(21%) models; UML’s activity diagram for the data flow (65%), software build and release processes (20–22%),

and system administration (36%) models; UML’s component diagram for the mapping between the functional

and concurrent components (35%), software module structure (47%), and system configuration (21%) models;

and UML’s package diagram for the software module structure (47%) models.

1

c

i

s

c

v

t

w

t

r

u

e

t

b

s

a

l

c

c

d

u

t

n

b

h

R

A

0

. Introduction

Software systems that are developed are getting larger and more

omplex each day due to the ever-increasing customer demand and the

mproving technology. This also leads to complex software system de-

igns that cannot easily be managed by the project stakeholders and

ause the software systems to be delivered late (or over-budget) or de-

eloped wrongly. To manage the software design complexity, the no-

ion of software architecture has been proposed in the early nineties,

hich promotes the decompositions of large and complex software sys-

ems into manageable components and connectors and their high-level

easoning [1–3] . Software architectures can be specified in a more mod-

lar and thus understandable way in terms of different perspectives that
∗ Corresponding author.

E-mail address: mozkaya@cse.yeditepe.edu.tr (M. Ozkaya).

a

a

c

s

ttps://doi.org/10.1016/j.infsof.2020.106275

eceived 16 November 2018; Received in revised form 12 January 2020; Accepted 3

vailable online 4 February 2020

950-5849/© 2020 Elsevier B.V. All rights reserved.
ach concern different aspects of software development. These perspec-

ives are actually called as software architecture viewpoints, which have

een initially proposed in the mid-nineties by Kruchten [4] . Kruchten

eparates the software architecture design into four viewpoints, which

re the logical, process, development, and physical viewpoints. In the

ogical viewpoint, the software system to be built is decomposed into

omponents and their relationships. In the process viewpoint, the con-

urrent interactions of the system components are focused upon. In the

evelopment viewpoint, the implementation-related issues are focused

pon. Lastly, in the physical viewpoint, the physical hardware units and

heir physical connections are focused upon, in which the logical compo-

ents are to be allocated. Another important work has been performed

y Soni et al. [5] , who proposed the conceptual, module, execution,

nd code viewpoints. The conceptual viewpoint is essentially the same

s Kruchten’s logical viewpoint, and the module viewpoint adapts the

onceptual viewpoint with the high-level implementation design deci-

ions that are independent of any programming languages (e.g., the
 February 2020

https://doi.org/10.1016/j.infsof.2020.106275
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2020.106275&domain=pdf
mailto:mozkaya@cse.yeditepe.edu.tr
https://doi.org/10.1016/j.infsof.2020.106275

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

i

p

p

o

g

t

o

f

a

i

s

t

s

d

t

s

c

d

s

t

t

a

s

u

c

p

d

H

e

e

d

b

a

a

g

a

p

c

t

s

t

e

i

a

m

m

t

[

1

v

e

a

c

S

s

t

p

i

t

f

o

p

d

n

t

e

c

m

w

f

T

a

n

t

A

v

(

t

i

t

r

p

a

e

g

i

o

m

a

s

p

f

t

t

p

s

t

r

p

f

u

w

p

c

a

t

c

i

v

s

t

T

s

e

v
deal structure of the software implementation). The execution view-

oint is for modeling the run-time elements (e.g., operating system and

rocess) and their communications. The code viewpoint represents the

rganisation of the source code into modules in any programming lan-

uages. Later on, Clements et al. [6] , offered the component & connec-

or, module, and allocation viewpoints that are each modeled in terms

f a set of architectural styles. The component & connector viewpoint

ocuses on decomposing software systems into components that inter-

ct via connectors, while the module viewpoint focuses on the software

mplementation and the allocation viewpoint focuses on the physical

ystem units. Garland et al. [7] also offered a large set of viewpoints

hat are categorised into five groups: domain analysis, component de-

ign, sub-system design, data design, process & deployment design. The

omain analysis focuses on the top-level architecture description of sys-

ems. The component design focuses on the components composing the

ystems, their interactions, and behaviors. The sub-system design fo-

uses on systems’s build-time and organisational structures. The data

esign focuses on data architecture and the process & deployment de-

ign focuses on the concurrency issues and the physical system struc-

ures. The IEEE community standardized the concept of software archi-

ecture viewpoints [8] (i.e., IEEE Standard 1471). They treat the view

nd viewpoint concepts separately. 1 That is, each view is essentially a

et of software models that describe the software system from a partic-

lar viewpoint. The view models are expected to satisfy the rules and

onstraints of the viewpoint that define the view.

Software architectures can be modeled in terms of different view-

oints using the software modeling languages, which can be architecture

escription languages [9] , domain-specific languages (e.g., Liszt [10] ,

IPA [11] , and NDL [12]), and UML [13] . Among them, Unified Mod-

ling Language is considered as the top-used language by practition-

rs for modeling software architectures [14–17] . UML offers various

iagrams for the visual specifications of software systems, which can

e categorised into static and dynamic diagrams. The static diagrams

re concerned with the system structures while the dynamic diagrams

re concerned with the system’s changing behaviors. UML’s static dia-

rams are the composite structure diagram, deployment diagram, pack-

ge diagram, profile diagram, class diagram, object diagram, and com-

onent diagram. UML’s dynamic diagrams are the activity diagram, use

ase diagram, state machine diagram and some interaction diagrams

hat are the sequence, communication, and timing diagrams. UML is

upported by a huge number of modeling tools, e.g., Enterprise Archi-

ect, Visual Paradigm, MagicDraw, Modelio, IBM Rational Rhapsody,

tc. Using these tools, practitioners can model their software systems

n UML and perform many different operations such as model man-

gement, analysis, simulation, user collaboration, project management,

odel transformation, documentation, etc. UML has also been extended

any times for adapting UML to different domains (e.g., embedded sys-

ems, multi-agent systems, distributed systems, and web applications)

18] .

.1. Motivation and goal

Given UML’s huge support by the community (including the tool

endors and language developers) and its popularity among practition-

rs, one would expect to learn to what extent practitioners use UML

nd its various types of diagrams for the modeling of software ar-

hitectures from different viewpoints. Unfortunately, as discussed in

ection 2 , the existing empirical studies on UML do not aid in under-

tanding practitioners perspectives on using UML for different architec-

ure viewpoints. While it is possible with the existing literature to get
1 The view and viewpoint terms are each referred explicitly in the rest of the

aper.

s

a

o
nformed about many practical issues on UML such as practitioners’ mo-

ivation/demotivation on UML and its diagram types, UML’s evaluation

or some quality properties, and UML’s usage rate for particular aspects

f software development, one may not easily understand to what extent

ractitioners use UML for various architecture viewpoints that each ad-

ress a different set of concerns of software development. Indeed, it is

ot clear as of now which viewpoints are modeled with UML in practice,

he specific concerns addressed with UML in each viewpoint, practition-

rs’ choice of the UML diagrams for each concern, and practitioners’

hoices of the UML modeling tools.

To form the basis of our research precisely, we initially define the

eta-model in Fig. 1 with the inspiration of the IEEE standard 1471,

hich shows the abstract concepts on describing software architectures

rom multiple viewpoints and the relationships between those concepts.

he software architecture descriptions are specified with the software

rchitecture description languages (e.g., UML), which offer a modeling

otation set and are supported with some modeling editors for the prac-

itioners to specify the architecture descriptions via the notation set.

n architecture description is essentially specified in terms of a set of

iews that each derive from a viewpoint which deals with a relevant

i.e., cohesive) set of concerns. The viewpoints herein are proposed by

he viewpoint frameworks that modularise the architectural descriptions

n terms of different viewpoints by considering the needs of particular

ypes of software systems or domains. A view of any viewpoint is rep-

esented with a set of model types that each describe how to solve a

articular concern of the relevant viewpoint. The model types herein

re instantiated as the view models, which are specified via the mod-

ling notation sets that are offered by the architecture description lan-

uages. As discussed in the next paragraph, we use our meta-model def-

nition to determine the concrete techniques, approaches, and tools in

ur own context that match with and satisfy the abstract concepts of the

eta-model definition and show how we consider in this research the

rchitectural descriptions from multiple-viewpoints. By doing so, we es-

entially aimed to establish the goal of our research in this paper in a

recise way that can clearly be understood in terms of its components.

Given the meta-model of our research in Fig. 1 , we consider UML

or the software architecture description language. Also, to determine

he set of viewpoints, we consider Rozanski et al.’s approach [19] for

he architecture viewpoint framework, which focuses on the needs of

ractitioners working with any types of information systems and at the

ame time supports the concepts of viewpoint, view, and model type

hat match well with our meta-model definition. So, our goal in this

esearch is to survey the practitioners to understand to what extent

ractitioners use UML for describing software architectures from dif-

erent viewpoints that Rozanski et al. offers in their framework. We

sed Rozanski et al.’s six different architecture viewpoints in this study,

hich are the functional, information, concurrency, development, de-

loyment, and operational viewpoints. The functional viewpoint is con-

erned with the functional elements that compose the software systems

nd their interactions. The information viewpoint is concerned with how

he system data are defined, stored, accessed, and transmitted. The con-

urrency viewpoint is concerned with mapping the functional elements

nto the concurrent elements and their concurrent interactions. The de-

elopment viewpoint is concerned with modeling the plans and deci-

ions made about the software development process such as structuring

he software code and planning the software build & release processes.

he deployment viewpoint is concerned with the physical structure of

ystems that represent the hardware elements in which the functional

lements will be run and their physical relationships. The operational

iewpoint is concerned with the operational issues that occur while the

ystem is run on its production environment and deal with monitoring,

dministering, restoring, and supporting the system. Note here that the

perational viewpoint focuses on managing and controling the running

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Fig. 1. The meta-model definition of describing software architectures from multiple viewpoints.

s

o

c

e

w

l

w

U

t

i

m

w

t

m

h

s

p

f

t

s

U

fi

C

i

v

a

t

s

i

t

g

t

n

v

d

v

s

t

i

r

a

o

d

1

s

g

o

A

t

l

2

d

w

i

U

ystem rather than the system’s requirements and design activities that

ther viewpoints focus on. However, the operational issues are highly

rucial and need to be resolved early on so as to minimise any required

ffort that may get much bigger if the operational issues were dealt with

hile the system is run in its environment. In Table 1 , we show the re-

ationships between Rozanski et al.’s viewpoints, the model types that

e consider from Rozanski et al.’s model list for each viewpoint, the

ML diagrams to be used as the modeling notations for instantiating

he model types, and the UML CASE tools to be used as the model ed-

tors for the UML language. Note here that Rozanski et al.’s viewpoint

odel types that we consider are each described in Section 5 , where

e discuss the survey analysis results for each viewpoint and its model

ypes. The set of UML diagrams and UML tools herein have been deter-

ined via the feedback received from the survey’s pilot study, which

ave been conducted among a set of practitioners before releasing the

urvey in the way discussed in Section 4.1 .

With our survey, we essentially intend to shed light on many im-

ortant but neglected issues including which viewpoints are important

or practitioners in their UML modeling, how that is affected by prac-

itioners’ work industries, what types of models practitioners tend to

pecify with UML for representing their views in each viewpoint, the

ML diagrams that practitioners frequently use in their model speci-

cations in each viewpoint, and practitioners’ preferences for the UML

ASE tools. The survey results will be essentially useful for attracting the

nterest of the software engineering community towards the multiple-

iewpoints modeling for managing large and complex software systems

nd its practical use via the de-facto UML language. Those who wish

o engineer their own domain-specific languages will be able to use the

urvey results to determine the popular viewpoints in their domain of

nterest and the popular UML notations used for specifying different

ypes of models that conform to those viewpoints. So, the language en-

ineers can easily address in their languages the expectations of practi-
ioners in terms of the multiple-viewpoints modeling and the modeling

otations to be used. Moreover, the results will certainly help the tool

endors to improve their UML tools or build new tools in a way that ad-

resses the issues about the multiple-viewpoints modeling determined

ia the survey. The survey results may further trigger new researches

uch as the analysis of the existing UML tools or the DSL meta-modeling

ools for the multiple-viewpoints support. So, practitioners in different

ndustries may use those analysis results to determine many important

equirements, including (i) the tools’ support for any of the viewpoint

pproaches discussed above (e.g., Kruchten’s model), (ii) the tools that

ffer their own viewpoints, or (i) the tools that allow practitioners to

efine user-specific viewpoints.

.2. Paper structure

In the rest of this paper, firstly, we discuss the related works with our

tudy. Then, the research questions that our survey aims to answer are

iven, which is followed by the discussions of the research methodology

f our survey that includes the survey design, execution, and sampling.

fter that, the survey results are discussed for each software architec-

ure viewpoint considered. Lastly, the summary of findings, the lessons

earned, and any threats to the validity of the results are discussed.

. Related work

In this section, the studies that are relevant to our survey study are

iscussed. We firstly focus on the software architecture viewpoint frame-

orks that are similar to Rozanski et al.’s framework which are survey

s based on. Following that, we focus on the analytical studies on the

ML language.

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Table 1

Describing the relationships between Rozanski et al.’s viewpoints and model types, UML’s diagrams, and the UML tools.

Viewpoint Model types UML diagrams UML tools

Functional Functional structure Class, Component, Composite Structure, Deployment,

Object, Package, Profile

ArgoUML, BoUML, Enterprise

Architect, MagicDraw, MS

Visual Studio, Obeo UML

Designer, Modelio, Papyrus,

Rational Rhapsody, StarUML,

Umbrello UML, Visual

Paradigm

Information Data flow Activity, Class, Component, Composite Structure, Object,

Package, Profile

Data structure Class, Component, Composite Structure, Deployment,

Object, Package, Profile

Data life-cycle Activity, Profile, Sequence/Communication, State, Timing

Concurrency Concurrency structure Class, Component, Composite Structure, Deployment,

Object, Package, Profile

Mapping between functional and

concurrent components

Component, Composite Structure, Deployment, Package,

Profile

Development Software modules structure Class, Component, Composite Structure, Deployment,

Object, Package, Profile

Software code structure Class, Component, Composite Structure, Deployment,

Object, Package, Profile

Software build process Activity, Class, Component, Composite Structure,

Deployment, Object, Package, Profile,

Sequence/Communication, State

Software release process Activity, Class, Component, Composite Structure,

Deployment, Object, Package, Profile,

Sequence/Communication, State

Deployment Physical structure Class, Component, Composite Structure, Deployment,

Object, Package, Profile

Mapping between functional and

physical components

Composite Structure, Deployment, Package, Profile

Operational System Installation Activity, Class, Composite Structure, Component,

Deployment, Object, Package, Profile

System administration Activity, Class, Component, Composite Structure,

Deployment, Object, Package, Profile,

Sequence/Communication, State, Timing, Use-case

System configuration Activity, Class, Component, Composite Structure,

Deployment, Object, Package, Profile,

Sequence/Communication, State, Timing, Use case

System support Activity, Class, Component, Composite Structure,

Deployment, Object, Package, Profile,

Sequence/Communication, State, Timing, Use case

Systen migration Activity, Class, Component, Composite Structure,

Deployment, Object, Package, Profile,

Sequence/Communication, State, Timing, Use case

2

s

e

v

t

s

t

t

a

a

R

o

v

e

w

R

t

v

w

p

o

h

e

t

p

e

p

e

c

L

s

a

v

i

a

d

2

e

i

m

i

c
.1. Similar viewpoint frameworks

While we used Rozanski et al.’s viewpoint framework for our survey

tudy as discussed in Section 1.1 , many similar frameworks have been

xisting that offer different considerations of the software architecture

iewpoints. 2 Some of those viewpoint frameworks even focus on par-

icular domains (e.g., embedded systems, weapon systems, air-force IT

ystems, distributed systems, real-time systems, etc.). Our main motiva-

ion for Rozanski et al.’s viewpoint framework is essentially to do with

heir relatively wide scope that can safely be understood and used by

ny practitioners who work on any types of information systems (i.e.,

ny computer systems that perform some business operations). Indeed,

ozanski et al. got highly inspired from the generic IEEE 1471 standard

n architectural description and considered IEEE’s separations on the

iewpoint and view concepts and their understanding of the view mod-

ls. Also, Rozanski et al.’s main focus is on the needs of practitioners,

ho are actually the contributors of our survey. Indeed, in their book,

ozanski et al. guides the architects on putting all the viewpoint descrip-

ions into practice. Table 2 shows the mapping between Rozanski et al.’s

iewpoints framework with some pioneering viewpoint frameworks that

e discussed in Section 1 . Apparently, while those approaches also sup-

ort the functional, concurrency, and development viewpoints, not all

f them actually support the other viewpoints proposed by Rozanski
2 The list of viewpoint frameworks can be accessed via the following link:

ttp://www.iso-architecture.org/42010/afs/frameworks-table.html .

F

o

s

s
t al. Indeed, the operational concerns of software systems are not in

he scope of any of the viewpoint frameworks. The information view-

oint is also ignored by Kruchten’s and Soni et al’s frameworks. Soni

t al. further ignores the deployment viewpoint. Clements et al.’s com-

onent & connector (C&C) viewpoint essentially encompasses Rozanski

t al.’s multiple viewpoints and thus hinders the modularity which may

ause difficulties for the model understandability and analysis in C&C.

astly, Garland et al.’s approach offers a large set of viewpoints that es-

entially correspond to Rozanski et al.’s viewpoint model types which

re modularised into the viewpoints. However, using such a large set of

iewpoints may cause the practitioners to end up with an unnecessar-

ly complex software architecture design that is difficult to understand

nd trace, and further requires ensuring the consistencies between many

ifferent viewpoints and thus hinder the manageability.

.2. UML and some analytical studies on UML

Since UML is used by many practitioners in industries, UML has been

xtended by many approaches via UML’s profiling mechanism for adapt-

ng UML to new domains or platforms. These include Agent UML [20] for

ulti-agent systems, Secure UML [21] and UMLSec [22] for specify-

ng the security aspects of distributed systems, Context UML [23] for

ontext-aware systems, UML-RT [24] for real-time embedded systems,

lex UML [25] for process-aware information systems, etc. The OMG

rganisation that standardised UML also proposed some UML profiles

uch as SoaML [26] for service-oriented architectures, SPEM [27] for

oftware process models, and SysML [28] for systems engineering. How-

http://www.iso-architecture.org/42010/afs/frameworks-table.html

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Table 2

The mapping between Rozanski et al.’s viewpoint framework and other frameworks.

Viewpoint frameworks Functional Information Concurrency Development Deployment Operational

Kruchten [4] Logical Process Development Physical

Soni et al. [5] Conceptual

Architecture

Execution Architecture Code, Module

Clements et al. [6] Component &

Connector

Component &

Connector

Component & Connector Module Alloc-ation

Garland et al. [7] Component

and

Component

Interaction

Logical Data,

Data Model,

Transaction

Process, Proc. State Layered

Subsys.,

Subsys.

Interface

Dependency

Deploy-ment

and Physical

Data

e

m

U

g

d

s

(

b

f

l

s

a

e

d

r

s

v

a

d

p

2

d

t

o

a

f

d

t

t

e

e

v

d

f

a

m

f

P

w

m

u

a

w

e

p

(

t

d

U

f

p

u

U

w

d

i

t

R

l

t

w

f

s

i

t

b

w

2

p

d

c

s

I

a

u

b

t

d

e

t

a

T

fl

(

i

q

o

e

f
ver, none of these works consider the practical use of UML for the

ultiple-viewpoints modeling and instead focus essentially on adapting

ML for a particular domain and their needs. Indeed, most of these lan-

uages are all centered around the logical and behavior viewpoints and

o not provide support for any other viewpoints. The literature includes

ome analytical studies that compare UML with some other languages

e.g., architecture description languages) [29,30] and also the UML-

ased languages with each other [31–33] . However, again, the support

or multiple viewpoints is ignored in those comparisons and instead the

anguages’ support for particular domains (e.g., embedded systems de-

ign) or particular aspects (e.g., mobility and software process modeling)

re focused. Recently, Ozkaya [9] has analyzed more than 120 differ-

nt architectural languages for a number of requirements including the

ifferent viewpoints considered in this study. While Ozkaya’s analysis

esults aid in understanding which architectural languages (including

ome UML-based languages) support which viewpoints, it does not re-

eal the practitioners’ preferences among different viewpoints and give

ny clue about which types of UML diagrams are more preferable for

escribing different types of models in each viewpoint.

In the rest of this section, the surveys that have been conducted on

ractitioners with the focus on their UML usages are discussed.

.2.1. Surveys on UML

The literature includes many survey studies that have been con-

ucted on UML. However, these surveys essentially focus on either (i)

he usage frequencies of UML diagrams, (ii) practitioners’ evaluation

f UML for some properties (e.g., code generation and user-friendliness,

nd notational complexity), (iii) practitioners’ motivation/demotivation

or UML, and (iv) practitioners’ experience with UML for some software

evelopment aspects (e.g., maintenance). Unlike our survey discussed in

his paper, none of the existing surveys focus on the software architec-

ure viewpoints in a comprehensive and systematic way and practition-

rs’ UML usage for different viewpoints. Indeed, to the best of our knowl-

dge, our survey is the first empirical study on the software architecture

iewpoints that consider various viewpoints for the software design and

evelopment activities (e.g., Rozanski et al. [19] ’s viewpoints), the dif-

erent types software models that can be specified for each viewpoint,

nd practitioners’ experiences on the UML diagrams for each viewpoint

odel.

Petre [34] interviewed 50 software developers who work in 50 dif-

erent companies to understand the different usage patterns for UML.

etre’s result show that most of the practitioners do not even use UML,

hile the rest consider using UML informally without following any for-

al procedures. This includes the informal purposes, such as personal

se, early modeling, and prototyping. A few developers also perform the

utomated code generation from their UML specifications.

Nugroho et al. [35] surveyed among 80 software developers who

ork in companies from different industries in Netherlands. Nugroho

t al. prepared 20 different questions for the purpose of understanding

ractitioners’ opinions about (i) the completeness of the UML models,

 ii) the preciseness (i.e., the level of details) of the UML models, (iii)
ransforming models into implementation, (iv) UML’s productivity for

ifferent stages of software development.

Wrycza et al. [36] surveyed among 180 different students who use

ML in their university studies. Wrycza et al. asked the students 17 dif-

erent questions for understanding (i) their opinions about UML’s com-

lexity, the diagrams with complex notations, and the usefulness and

ser-friendliness of UML diagrams, (ii) whether they find the existing

ML diagrams adequate for their software design, (iii) their interest to-

ards the source-code generation from the UML diagrams, and (iv) their

iagram choices for the dynamic view specifications.

Lange et al. [37] surveyed among 80 different architects who work

n different domains. In their survey, Lange et al. seek to understand

he architects’ interest towards different viewpoints that IBM’s Rational

ose modeling tool support in their environment. These are the use-case,

ogical, component, deployment, and scenario viewpoints. According to

he results, while use-case and logical viewpoints are the top used ones

ith UML, the deployment viewpoint is the least used one.

Osman et al. [38] surveyed among 32 software developers who are

orced to answer 13 different questions. Osman et al. intended in their

urvey to learn what types of information that practitioners wish to spec-

fy with UML’s class diagram and what information they do not need in

he class diagram. By doing so, UML’s class diagram can be simplified

y abstracting out the unnecessary details.

Fernandez-Saez et al. [39] surveyed among 178 practitioners that

ork in 12 different countries. Fernandez-Saez et al.’s survey includes

8 different questions with the purpose of understanding to what extent

ractitioners use UML for documenting the software maintenance.

Dobing et al. [40] surveyed among 299 practitioners from the IT in-

ustry. Dobing et al. focused on 6 different UML diagrams, which are

lass diagram, use case diagram, sequence diagram, activity diagram,

tate-chart diagram, and collaboration (aka communication) diagram.

n their survey, Dobing et al. aimed at understanding practitioners’ us-

ge ratio for those 6 UML diagrams and the correlations between the

se of different diagrams. Dobing et al. also considered any correlations

etween the project size and the UML diagrams and the UML diagram(s)

hat are more attractive to the clients who are involved in the system

evelopments.

Grossman et al. [41] surveyed among 150 practitioners from differ-

nt profiles (i.e., countries, job titles, experiences, etc.) and prompt them

o answer 32 different questions that address 8 key properties for evalu-

ting practitioners’ experience on UML (i.e., how useful UML is to them).

hese properties are (i) right data, (ii) accuracy, (iii) compatibility, (iv)

exibility, (v) understandability, (vi) level of details, (vii) training, and

 viii) ambiguity.

Reggio et al. [42] surveyed among 275 different practitioners from

ndustry and academia who have been asked to answer 32 different

uestions. Reggio et al. aimed at understanding the usage frequencies

f the UML diagrams and how this is affected by the user profiles.

Agner et al. [43] surveyed among 209 developers working in the

mbedded software domain. Agner et al. asked 20 different questions

or the purpose of understanding the embedded developers’ experience

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

w

t

w

p

t

3

t

i

v

h

r

m

m

i

o

f

f

s

i

f

g

w

m

e

o

i

M

t

p

t

4

4

f

M

b

s

R

R

s

m

W

t

W

a

t

f

m

t

l

t

d

l

t

(

f

t

t

t

w

m

t

w

p

f

n

(

e

i

m

t

q

q

b

p

1

m

t

i

r

t

d

q

i

t

i

s

w

o

u

o

p

i

d

g

I

i

a

t

p

t

p

m

t

o

o

q

(

a

4

v

f

p

3 Rozanski et al.’s book web-site that shares the precise information on their

viewpoints: https://www.viewpoints-and-perspectives.info/home/viewpoints/ .
4 https://docs.google.com/forms .
ith UML. Agner et al. essentially aimed at answering the research ques-

ions such as why UML is not (or just partially) used by the developers,

hether UML satisfies their needs or not, whether they find UML com-

lex or not, and which UML diagrams are used more than the others for

he embedded software design.

. Research questions

In this survey, we seek to answer the following research questions

hat aid in achieving the paper goal stated in Section 1.1 .

RQ1: Which software architecture viewpoint(s) do practitioners consider

n modeling their software architectures? In this question, Rozanski et al.’s

iewpoint framework has been considered the following viewpoints

ave been focused upon in our survey: functional, information, concur-

ency, deployment, development, and operational. The goal is to deter-

ine for each of those viewpoints the frequency of practitioners who

odel their software architectures in that viewpoint.

RQ2: Which type(s) of software architecture models do practitioners spec-

fy in each viewpoint that they are interested in? In this question, we focus

n the different types of software models that Rozanski et al. proposed

or each of their architecture viewpoints. So, the goal is to determine

or each viewpoint model considered the frequency of practitioners who

pecify that model as part of their software architecture design.

RQ3: Which UML diagram(s) do practitioners prefer to use for specify-

ng the software architecture models in each viewpoint? This question also

ocuses on Rozanski et al.’s viewpoint model types considered. So, the

oal is to determine for each software architecture viewpoint model type

hich UML diagram(s) are used by practitioners for creating software

odels in that type as part of their software architecture design.

RQ4: Which UML modeling tool(s) do practitioners prefer to use for mod-

ling their software architectures in each viewpoint? In this question, a set

f popular well-known UML modeling tools are focused, including Mag-

cDraw, Visual Paradigm, IBM Rational Rhapsody, Enterprise Architect,

odelio, Obeo UML Designer, and StarUML. The goal here is to de-

ermine for each viewpoint considered the UML modeling tool(s) that

ractitioners prefer to use for performing their modeling activities in

hat viewpoint.

. Survey design, execution, and sampling

.1. Survey design

To design our survey, we have used our knowledge and experiences

rom our previous surveys that we conducted in the near past [14,17] .

oreover, our survey has been inspired from Rozanski et al.’s seminal

ook on software architecture viewpoints [19] . Indeed, we prepared a

et of survey questions for each architecture viewpoint suggested by

ozanski et al., and each question targets a particular model type that

ozanski et al. proposed to be specified in that viewpoint.

Before publishing our survey, we conducted a pilot study among

et of practitioners who have been using UML for several years for the

ultiple-viewpoints modeling of software systems in diverse industries.

e initially contacted 10 different practitioners whom we know from

he past projects and who have got 10+ years of experience on UML.

e let those 10 practitioners know about the survey motivation, goal,

nd research questions. 5 practitioners have accepted to participate in

he pilot study, and we provided them with the survey questionnaire

orm. Note here that we interacted with the practitioners either by e-

ail or face-to-face meetings depending on their preferences. Each prac-

itioner has been given 7 days to return us their feedback about the fol-

owing issues: (i) the survey structure (i.e., sections, sub-sections, and

heir order), (ii) missing/ambiguous questions and answer lists, (iii) the

ependencies between the questions, (iv) the question types (e.g., tabu-

ar, multiple-choice, yes/no, and free-text), (v) the expected amount of

ime to fill in the survey, (vi) any supplementary materials needed, and

 vii) how to reach the potential participants. In case of the conflicting
eedback of different practitioners, we conducted further meetings with

hose practitioners to reach on a consensus. As a result, we managed

o get rid of many issues that the practitioners pointed out and fixed

he survey questions. Moreover, as many of the practitioners requested,

e decided to add a supplementary material to the survey questions to

ake them more precise. Since we based the survey on the architec-

ure viewpoints proposed by Rozanski et al., we used the book web-site

hich gives the most precise introductory information about the view-

oints. 3 Rozanski et al. provides in their book web-site a separate link

or each viewpoint and describes the viewpoint in terms of its (i) defi-

ition, (ii) concerns, (iii) model types, (iv) pitfalls, (v) stakeholders, and

 vi) applicability. So, we provided the link for each viewpoint on the rel-

vant survey section, and thus, any practitioners who wish to be further

nformed about the viewpoints before answering the relevant questions

ay then click on the link and get all the necessary information.

The survey has been fixed with 35 different questions that target

he research questions stated in Section 3 . Table 3 shows the survey

uestions, their features, and the research questions that the survey

uestions are associated with. So, the survey questions can basically

e grouped as (i) the profile questions (1–6), (ii) the functional view-

oint questions (7–9), (iii) the information viewpoint questions (10–

4), (iv) the concurrency viewpoint questions (15–18), (v) the develop-

ent viewpoint questions (19–24), (vi) the deployment viewpoint ques-

ions (25–28), and (vii) the operational viewpoint questions (29–35). As

ndicated in Table 1 , each viewpoint question group includes a sepa-

ate question for understanding the UML diagrams used for each model

ype considered in the corresponding viewpoint and a question for un-

erstanding the UML tool used for that viewpoint. Most of the survey

uestions are multiple-answer questions that flexibly allow the partic-

pants to choose any of the given answer(s). Note here that some of

he multiple-answer questions offer participants with the option of typ-

ng their own answers (i.e., free text). This is essentially the case with

ome profile questions and the questions that aim to learn the UML tools

hich practitioners use for each viewpoint modeling. With the free text

ptions, the participants may type (i) the name(s) of any tools that they

se but are not given in the answer list of the question or (ii) any kind

f projects/industries/jobs that are not given in the answer list of the

rofile questions. To analyse the free-text answers, we followed the cod-

ng strategy manually [44] . That is, we coded each free-text answer to

etermine its category that can either be among the existing categories

iven in the answer list of the question or considered as a new category.

f the free-text answer is appropriate for multiple answers in the exist-

ng answer list, we counted it for each of those answers. If the free-text

nswer is not existing, we added it to the answer-list as a new answer of

he associated survey question. Some of the participants typed inappro-

riate answers, such as “university ” for the work industry, which we had

o omit for the questions. To minimise any biases for coding, we both

erformed coding individually at different times. Then, we conducted a

eeting to discuss and compare our individual suggestions of interpre-

ations for each coding and agreed on the most accurate interpretation

f the free-text answers. The other questions are Yes/No questions with-

ut any choice for free-text. However, to enhance precision, the Yes/No

uestions have been presented with the rating answers, which are always

100%), much of the time (> 70%), often (≥ 50%), sometimes (< 50%) ,

nd never (0%) .

.2. Survey execution

Our survey has been conducted online via Google forms 4 and the sur-

ey was available online between March 2018 and June 2018. Given our

ocus on the practitioners’ UML usage for different architecture view-

oints, we target in the survey the practitioners who are involved in the

https://www.viewpoints-and-perspectives.info/home/viewpoints/
https://docs.google.com/forms

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Table 3

Survey questions.

Res. que. Survey questions Multiple

answer

Free

text

Yes/no

ques.

Numeric

answer

Profile Questions 1- Which country do you work in? Y N N N

2- What is (are) your current job position(s)? Y Y N N

3- Which industry(ies) do you work in? Y Y N N

4- What are the type(s) of software projects that you are involved in? Y Y N N

5- How many years of experience do you have in software development? N N N Y

6- Do you use UML for modeling software systems from different viewpoints? N N Y N

RQ1 7- Do you model the functional view(s) of software systems in UML? N N Y N

RQ2, RQ3 8- Which UML diagram(s) do you use for modeling the functional structure of software

systems?

Y N N N

RQ4 9- Which UML modeling tool(s) do you use for modeling the functional views of software

systems in UML?

Y Y N N

RQ1 10- Do you model the information view(s) of software systems in UML? N N Y N

RQ2, RQ3 11- Which UML diagram(s) do you use for modeling the data flow of software systems? Y N N N

12- Which UML diagram(s) do you use for modeling the data structure of software systems? Y N N N

13- Which UML diagram(s) do you use for modeling the data lifecycle of systems (i.e., how

data changes over time)?

Y N N N

RQ4 14- Which UML modeling tool(s) do you use for modeling the information views of software

systems in UML?

Y Y N N

RQ1 15- Do you model the concurrency view(s) of software systems in UML? N N Y N

RQ2, RQ3 16- Which UML diagram(s) do you use for modeling the concurrency structure of software

systems (i.e., threads and processes)?

Y N N N

17- Which UML diagram(s) do you use for mapping the functional components into the

concurrency components?

Y N N N

RQ4 18- Which UML modeling tool(s) do you use for modeling the concurrency views of software

systems in UML?

Y Y N N

RQ1 19- Do you model the development view(s) of software systems in UML? N N Y N

RQ2, RQ3 20- Which UML diagram(s) do you use for modeling the structure of software modules? Y N N N

21- Which UML diagram(s) do you use for modeling the source-code structures? Y N N N

22- Which UML diagram(s) do you use for modeling the software build process? Y N N N

23- Which UML diagram(s) do you use for modeling the software release process? Y N N N

RQ4 24- Which UML modeling tool(s) do you use for modeling the development views of software

systems in UML?

Y Y N N

RQ1 25- Do you model the deployment view(s) of software systems in UML? N N Y N

RQ2, RQ3 26- Which UML diagram(s) do you use for modeling the physical structure of software

systems?

Y N N N

27- Which UML diagram(s) do you use for mapping the functional components into physical

components?

Y N N N

RQ4 28- Which UML modeling tool(s) do you use for modeling the deployment views of software

systems in UML?

Y Y N N

RQ1 29- Do you model the operational view(s) of software systems in UML? N N Y N

RQ2, RQ3 30- Which UML diagram(s) do you use for modeling the system installation elements and

their dependencies?

Y N N N

31- Which UML diagram(s) do you use for modeling the system administration issues ? Y N N N

32- Which UML diagram(s) do you use for modeling the system configuration issues ? Y N N N

33- Which UML diagram(s) do you use for modeling the system support issues ? Y N N N

34- Which UML diagram(s) do you use for modeling the system migration issues ? Y N N N

RQ4 35- Which UML modeling tool(s) do you use for modeling the operational views of software

systems in UML?

Y Y N N

s

a

t

w

o

u

s

t

w

o

s

t

h

s

w

w

p

b

c

t

s
oftware modeling & development in different industries. So, to avoid

ny biases, we intentionally chose not to send the survey to any prac-

itioners who work in academia with no industry background or those

ith no software modeling & development experience. However, our

bservations show that a few academics have filled in the survey, and

nfortunately, we had to omit their records during the analysis of the

urvey results so as to minimise any biases. Also, we did not consider

he records from the participants who do not use UML for modeling soft-

are architectures from different viewpoints. Indeed, the sixth question

f the survey indicated in Table 3 prompts the participants to submit the

urvey directly without answering the viewpoint modeling questions if
hey have never used UML for the architectural modeling. So, all these

elped us eliminate any potential misleading data for the analysis of the

urvey results.

To reach as many practitioners from industry as possible,

e followed a systematic approach. Initially, we started off

ith our personal contacts whom we know from the research

rojects/consultations/conferences/workshops/etc. that we have

een involved in the past. We sent an e-mail to 50 different personal

ontacts. Also, we determined a set of practitioners who have con-

ributed to the well-cited scientific papers about software modeling,

oftware architectures, or UML. We sent an e-mail to 125 such prac-

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Fig. 2. The distribution of the participants depend-

ing on the survey sharing methods.

t

a

o

p

s

m

s

m

S

T

D

M

s

b

Q

t

i

m

–

m

m

e

t

f

u

d

t

o

g

i

c

s

o

g

(

p

m

t

e

a

T

w

4

a

n

m

i

s

s

s

t

t

s

t

t

g

w

a

p

m

e

g

a

t

d

m

o

u

s

w

i

s

g

t

t

t

t

p

a

s

t

5

5

5

a

U

g

C

T

i

itioners. Note that for each e-mail sent, we performed snow-balling

nd kindly requested the practitioners to forward the e-mail to any

ther practitioners whom they know and consider as the potential

articipants. Following that, we used the social platforms to spread the

urvey as much as possible, which was essentially so useful in reaching

any practitioners around the world. We initially shared the survey in

everal related linkedin groups that have 5000+ members and receive

any posts/comments actively each day. These include such groups as

oftware Architects and Enterprise Architects, Software Architecture,

he Enterprise Architecture Network, Software As a Service, Software

esign Patterns and Architecture, Software Engineering Professionals,

odel Driven Architecture, and Software Developer. Moreover, we

hared the survey in some google groups that are actively participated

y the software engineers. These include UML forum, Istanbul-Coders,

uality Analyst, and MongoDB-User. We also sent the survey e-mail

o the active mailing lists in which many software developers who are

nterested in modeling have been registered with. These include the

ailing-list of the IEEE standard for Systems and software engineering

Architecture description (ISO/IEC/IEEE 42010:2011) and the several

ailing lists of the Eclipse foundations that are concerned with software

odeling (e.g., papyrus-ic, papyrus-sysml, papyrus-jp, mdt-papyrus,

mf-dev, and cappella-dev). To further attract interest, we created

opics on some active software development forums to kindly invite the

orum participants for their contributions to the survey. The forums we

sed include dev-shed, source-forge, code ranch, and eclipse forums.

As a result, our survey has received 109 different responses from 34

ifferent countries around the world. Fig. 2 shows the rough distribu-

ion of the practitioners who contributed to the survey on the meth-

ds that can be employed for reaching the survey. So apparently, we

ot most of the contributions from the linkedin groups (36%), which

s followed by the mailing list (Eclipse and IEEE) (32%) and personal

ontract contributions (14%). The practitioners who contributed to the

cientific papers about software modeling just constitute the 9% of the

verall participants. The least contributions have been received from the

oogle groups and forums. Note that these data are essentially based on

 i) the number of positive responses that we received from the partici-

ants who used any of those methods for reaching the survey (e.g., reply

essages, number of likes, number of comments, etc.), (ii) our observa-

ions on the response rate during which the particular method has been

mployed, and (iii) our observations on the response rate during which

 reminder e-mail/message has been released for a particular method.

herefore, Fig. 2 gives an approximate distribution of the participants,

hich is expected to be close to the actual distributions.

.3. Survey sampling

Given the two sampling techniques for selecting participants – prob-

bility sampling and non-probability sampling [45] , we have used the

on-probability sampling method. While probability sampling leads to

ore precise results, we were not able to use the probability sampling as
t requires to access every practitioner of industry who are involved in

oftware development and select them randomly. Indeed, it was not pos-

ible for us to reach every practitioner due to the time and budget con-

traints. Therefore, using the non-probability sampling, we have chosen

he participants non-randomly via the methods discussed in Section 4.2 .

As we used our personal contacts and the practitioners who con-

ributed to the relevant papers, we essentially applied the convenience

ampling of the non-probability sampling technique, in which the practi-

ioners who are easy-to-access have been chosen to be invited. To spread

he survey, we also used the online social platforms (i.e., linkedin,

oogle groups, mailing lists, and forums), which essentially let us some-

hat mimic the probability sampling. Indeed, many professionals today

re the members of linkedin and follow the groups relevant to their ex-

ertise. Likewise, several mailing lists on software modeling & develop-

ent have been actively used by thousands of practitioners today, which

nable receiving up-to-date news about the existing or new technolo-

ies, any innovations, or share some ideas, papers, and surveys. Forums

lso play a key role as the discussion platforms on which many prac-

itioners can discuss several relevant issues on software modeling and

evelopment. Therefore, each practitioner who uses the social platforms

entioned above can essentially be considered to have an equal chance

f accessing the survey. Given thousands of practitioners who actively

se social platforms, we were able to reach as many practitioners as pos-

ible who are interested in software modeling & development randomly

ithout knowing whom they are and where they work for. However,

t should be noted here that it was not possible for us to group the re-

ponses of those practitioners and select a sub-set of responses from each

roup randomly (i.e., a cluster probability sampling [46]). This is due

o the fact that in our survey, we did not collect any personal informa-

ion (e.g., the company name or any other identity data) for grouping as

hat damages the anonymity of the survey participants and may make

he potential participants stop filling the survey form.

Concerning the unit of analysis for the survey sample, our unit is the

ractitioner who use UML for the software modeling in any industries

s discussed in Section 4.2 . Each practitioner has participated to the

urvey individually and anonymously without giving any personal data

hat may expose their identity.

. Survey findings and results

.1. Profiles

.1.1. The work countries of the participants (Q1)

The survey attracted participants from 34 different countries. These

re USA, Colombia, Latvia, Austria, Estonia, Singapore, South Africa,

ruguay, Switzerland, Ukraine, Vietnam, Ghana, Ireland, Australia, Bel-

ium, Brazil, Canada, Finland, France, Costa Rica, Germany, India,

hile, Denmark, Mexico, Italy, Poland, Portugal, Spain, Russia, Sweden,

he Netherlands, Turkey, and United Kingdom. Among all those, USA

s the top-popular country, followed by India, France, UK, and Turkey.

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Fig. 3. The current job positions of the participants.

Fig. 4. The work industries for the participants.

5

b

(

s

a

5

i

t

b

e

b

5

(

o

a

s

p

j

5

e

2

b

5

s

l

d

b

5

t

c

t

i

e

i

5

(

v

4

s

.1.2. The current job positions of the participants (Q2)

As Fig. 3 shows, the software architect is the top-selected job position

y participants (39%), followed by the Software Developer/Programmer

27%). While the rest of the job positions are not so popular (≤ 15%),

ome positions such as IT/network architect, R&D/product manager,

nd tester are rarely held by the participants.

.1.3. The work industries of the participants (Q3)

As Fig. 4 shows, IT and Telecommunications is the top-popular work

ndustry, selected by 30% of the participants. Automotive & Transporta-

ion and Finance & Accounting are also quite popular industries, selected

y 16–18% of the participants. Note that some of the industries such as

nergy, supply chain, logistics, and electrical utilities are rarely selected

y the participants.

.1.4. The types of software projects that the participants are involved in

Q4)

As Fig. 5 shows, the top-selected software project type is the devel-

pment of business applications software (54%), followed by the web

pplications (43%). Some of the other important software project types

uch as mobile applications, systems software, scientific/engineering ap-

lications software, and safety-critical and mission-critical software are

ust selected by 24–29% of the participants.

.1.5. The participants’ experience on software development (Q5)

As Fig. 6 shows, most of the participants (81%) have 10+ years of

xperience on software development. While another 16% have at least
 years of experience, just 3% have no experience at all and thus have

een directed to submit the form to avoid any biases.

.2. UML for different software architecture viewpoints (Q6)

As Fig. 7 shows, most of the participants (88%) use UML in their

oftware architectures modeling from different viewpoints at different

evels of frequency. The rest of the participants who never use UML for

ifferent viewpoints have been directed to submit the form to avoid any

iases.

.3. Functional viewpoint

Rozanski et al.’s functional viewpoint considers the functional struc-

ure models for software systems. A functional structure model is con-

erned with decomposing software systems into functional components

hat have some interfaces for interacting with other components. The

nterfaces of the functional components are linked via the connector el-

ments, which may be as simple as basic links or impose some complex

nteraction protocols.

.3.1. Do you model the functional view(s) of software systems in UML?

Q7)

As Fig. 8 shows, most of the participants (96%) model the functional

iews of their software systems in UML at varying levels of frequency.

% of the participants who never do so have been directed to the next

ection (i.e., the information viewpoint).

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Fig. 5. The types of software projects that the par-

ticipants are involved in.

Fig. 6. The years of experiences for the participants.

Fig. 7. The frequency of the participants who use UML for modeling

their software architectures from multiple viewpoints.

d

t

w

f

i

a

t

t

b

5

s

t

t

t

d

a

5

v

i

(

i

i

m

P

f

s

t

s

p

t

t

s

i
As Table 4 shows, IT & telecommunications is the top-selected in-

ustry by the participants who model the functional views in UML, and

he top-selected project types are the business applications software and

eb applications. Concerning their correlations, while the participants

rom the automotive & transportation and defense/military & aviation

ndustries focus more on the safety-critical and mission-critical software

nd scientific/engineering applications software, the participants from

he finance & accounting, government, healthcare & biomedical, IT &

elecommunications, and software outsourcing industries focus on the

usiness applications software and web applications.

.3.2. Which UML diagram(s) do you use for modeling the functional

tructure of software systems? (Q8)

As Fig. 9 shows, among the participants who use UML for the func-

ional view modeling, a few of them (8%) never use UML for the func-

ional structure modeling, and another 5% are not interested in the func-

ional structure modeling at all. Concerning the rest, the top-used UML

iagram is the class diagram (71%), which is followed by the component

nd package diagrams (40–58%).
.3.3. Which UML modeling tool(s) do you use for modeling the functional

iews of software systems in UML? (Q9)

As Fig. 10 shows, while many different tools are used by the partic-

pants, the top-used one is the Enterprise Architect UML modeling tool

53%) and that is followed by the StarUML (16%). Just a few partic-

pants (2%) still draw their functional view models by hand. Another

nteresting outcome is that some participants (14%) specify their UML

odels for the functional views using the office tools (e.g., MS Office

owerPoint/Word and LibreOffice) that provide no particular support

or UML (e.g., UML syntax checking, code generation, UML model ver-

ioning, etc.).

Fig. 11 shows the correlation between the work industries of the par-

icipants who use some tools for modeling the functional view of their

oftware systems in UML and their tool choices. So apparently, Enter-

rise Architect is the top-used UML modeling tool in most of the indus-

ries - except consumer electronics and healthcare & biomedical. Among

he rest of the UML tools, StarUML, MagicDraw, and IBM Rational Rhap-

ody are used in many of the industries indicated, while their usage ratio

s not as high as that of Enterprise Architect. Also, some industries (i.e.,

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Table 4

The distribution of the participants who model the functional view depending on the work industries and the software projects involved.

Business

application

software

Mobile

application

Safety-critical

and

mission-critical

software

Scientific/

engineering

applications

software

Systems

software

Web

applications

Total

Automotive and transportation 3 (13%) 0 (0%) 7 (29%) 6 (25%) 7 (29%) 1 (4%) 24 (100%)

Consumer electonics 0 (0%) 0 (0%) 1 (50%) 0 (0%) 1 (50%) 0 (0%) 2 (100%)

Defense/military & aviation 2 (11%) 0 (0%) 7 (39%) 4 (22%) 3 (17%) 2 (11%) 18 (100%)

Finance and accounting 11 (39%) 6 (21%) 0 (0%) 1 (4%) 1 (4%) 9 (32%) 28 (100%)

Government 10 (36%) 2 (7%) 3 (11%) 2 (7%) 4 (14%) 7 (25%) 28 (100%)

Healthcare and biomedical 3 (39%) 1 (12%) 1 (12%) 1 (12%) 0 (0%) 2 (25%) 8 (100%)

IT and telecomunications 17 (31%) 9 (17%) 2 (4%) 5 (9%) 7 (13%) 14 (26%) 24 (100%)

Sofware outsourcing 8 (30%) 6 (22%) 0 (0%) 3 (11%) 3 (11%) 7 (26%) 27 (100%)

TOTAL 54 24 21 22 26 42

Fig. 8. The frequency of the participants who model the functional

view(s) of software systems in UML.

Fig. 9. The UML diagrams used by the participants for modeling the functional structure.

I

n

t

5

m

t

m

t

t

a

f

e

i

f

a

5

(

v

q

s

t

t

c

p

s

c

i

w

5

s

m
T & telecommunications, healthcare & biomedical, government, and fi-

ance & accounting) use the office tools more than many UML modeling

ools despite the office tools lacking in support for the UML modeling.

.4. Information viewpoint

We consider Rozanski et al.’s three different models for the infor-

ation viewpoint, which are the static data structure model, informa-

ion flow model, and information lifecycle model. A static data structure

odel for a system describes the structure of the system data in terms of

he data elements and their relationships with each other. An informa-

ion flow model describes the data flow between the system components

nd is concerned with the type, volume, and direction of the data trans-

erred between the components, and how the data transfer occurs (e.g.,

xchanging flat files or XML messages). An information lifecycle model

s concerned with how the data representing the system state transition

rom one to another due to some events occuring, such as time elapsed

nd the method-call received/made.
.4.1. Do you model the information view(s) of software systems in UML?

Q10)

As Fig. 12 shows, almost all the participants model the information

iews of their software systems in UML (99%) at different levels of fre-

uency. Those who do not so have been directed to the next survey

ection (i.e., the concurrency viewpoint).

As Table 5 shows, IT & telecommunications is the top-selected indus-

ry by the participants who model the information views in UML, and

he business applications software is the top-selected project type. Con-

erning the correlations, the participants from the automotive & trans-

ortation and defense/military & aviation industries focus more on the

afety-critical & mission-critical software, scientific/engineering appli-

ations software and systems software. The participants from rest of the

ndustries considered focus on the business applications software and

eb applications.

.4.2. Which UML diagram(s) do you use for modeling the data flow of

oftware systems? (Q11)

As shown in Fig. 13 , some participants (17%) do not use UML for

odeling the data flow and another 2% are not interested in that

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Fig. 10. The UML modeling tools used

by the participants for modeling the func-

tional view.

Fig. 11. The correlation between the

work industries of the participants and

the tool(s) that they use for the functional

view modeling in UML.

Fig. 12. The frequency of the participants who

model the information view(s) of software systems

in UML.

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Table 5

The distribution of the participants who model the information view depending on the work industries and the software projects involved.

Business

application

software

Mobile

application

Safety-critical

and

mission-critical

software

Scientific/

engineering

applications

software

Systems

software

Web

applications

Total

Automotive and ransportation 3 (13%) 0 (0%) 7 (29%) 6 (25%) 7 (29%) 1 (4%) 24 (100%)

Consumer lectonics 0 0 1 (50%) 0 1 (50%) 0 2 (100%)

Defense/ilitary & viation 2 (10%) 0 (0%) 7 (38%) 4 (21%) 2 (10%) 2 (10%) 19 (100%)

Finance and ccounting 11 (35%) 6 (19%) 0 1 (6%) 3 (10%) 9 (30%) 31 (100%)

Government 10 (36%) 2 (7%) 3 (11%) 2 (7%) 4 (14%) 7 (25%) 28 (100%)

Healthcare and iomedical 3 (40%) 1 (12%) 1 (12%) 1 (12%) 0 2 (24%) 8 (100%)

IT and elecomunications 17 (31%) 9 (17%) 2 (4%) 5 (9%) 7 (13%) 14 (26%) 24 (100%)

Sofware utsourcing 8 (28%) 6 (21%) 0 3 (10%) 5 (17%) 7 (24%) 29 (100%)

TOTAL 54 24 22 23 30 42

Fig. 13. The UML diagrams used by the participants

for modeling the data flow.

Fig. 14. The UML diagrams used by the

participants for modeling the data struc-

ture.

a

i

(

5

o

i

m

a

(

2

5

o

m

f

t

a

w

5

i

t

t

i

r

p

i

p

i

i

U

a

a

f
t all. Concerning the rest, the top-used UML diagram is the activ-

ty diagram (65%), which is followed by the state and class diagrams

30-31%).

.4.3. Which UML diagram(s) do you use for modeling the data structure

f software systems? (Q12)

As shown in Fig. 14 , among the participants who use UML for the

nformation view modeling, a few participants (11%) do not use UML for

odeling the data structure, and another 3% are not interested in that at

ll. Concerning the rest, the top-used UML diagram is the class diagram

85%), which is followed by the object and component diagrams (19-

0%).

.4.4. Which UML diagram(s) do you use for modeling the data life-cycle

f systems (i.e., how data changes over time)? (Q13)

As Fig. 15 shows, among the participants who use UML for the infor-

ation view modeling, almost one-third of them (28%) do not use UML

or modeling the data life-cycle and another 15% show no interest on

he data life-cycle modeling. Concerning the rest, the top-used UML di-
grams are the sequence/communication and state diagrams (45–47%),

hich is followed by the activity diagram (25%).

.4.5. Which UML modeling tool(s) do you use for modeling the

nformation views of software systems in UML? (Q14)

As Fig. 16 shows, 8% of the participants simply draw their informa-

ion models on white papers without using any tools. Among the par-

icipants using some UML modeling tools, the participants’ top choice

s Enterprise Architect (45%). Note that the rest of the UML tools are

arely used. As also the case with the functional view modeling, some

articipants (18%) use the office tools to create the UML models for the

nformation views.

Fig. 17 shows the correlation between the work industries of the

articipants and their tool choices for the information view modeling

n UML. In all the industries (except healthcare and software outsourc-

ng), Enterprise Architect is the top-used UML modeling tool. The other

ML modeling tools that are used in many of the industries considered

re Visual Studio, MagicDraw, and Visual Paradigm. The office tools

re also used in all the industries, except consumer electronics and de-

ense/military & aviation. Indeed, in the software outsourcing industry,

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Fig. 15. The UML diagrams used by the participants

for modeling the data life-cycle.

Fig. 16. The UML modeling tools used by the par-

ticipants for modeling the information view.

Fig. 17. The correlation between the work indus-

tries of the participants and the tool(s) that they use

for the information view modeling in UML.

t

t

5

r

s

r

e

t

o

w

o

t

a

p

5

(

c

m

s

i

c

a

r

d

m

a

d

p

he office tools and StarUML are used even more than Enterprise Archi-

ect.

.5. Concurrency viewpoint

We consider Rozanski et al.’s two different models for the concur-

ency viewpoint, which are the system-level concurrency model and the

tate model. A system-level concurrency model describes the concur-

ency structure of software systems in terms of the runtime execution

lements, such as processes and threads, and their concurrent interac-

ions. The system-level concurrency model also addresses the mapping

f the functional components into the concurrent components to show

hich functional components run concurrently within the same process

r different processes. A state model is concerned with the state transi-

ions for the concurrency system elements (e.g., threads and processes)

nd describes how the concurrency elements transition their states de-

ending on any events occuring.
.5.1. Do you model the concurrency view(s) of software systems in UML?

Q15)

As Fig. 18 shows, two-thirds of the participants (66%) model the

oncurrency views of their software systems in UML. Those who never

odel the concurrency views in UML have been directed to the next

ection (i.e., development viewpoint).

As Table 6 shows, IT & telecommunications and software outsourc-

ng are the top-selected industries by the participants who model the

oncurrency views in UML, and business applications software and web

pplications are the top-selected project types. Concerning the cor-

elations, the participants from the automative & transportation and

efense/military & aviation industries focus on the safety-critical &

ission-critical software, scientific/engineering applications software,

nd systems software projects. The participants from the rest of the in-

ustries focus more on the business applications software and web ap-

lications.

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Table 6

The distribution of the participants who model the concurrency view depending on the work industries and the software projects involved.

Business

application

software

Mobile

application

Safety-critical

and

mission-critical

software

Scientific/

engineering

applications

software

Systems

software

Web

applications

Total

Automotive and transportation 1 (7%) 0 (0%) 3 (20%) 5 (33%) 6 (40%) 0 (0%) 15 (100%)

Consumer lectonics 0 (0%) 0 (0%) 1 (50%) 0 (0%) 1 (50%) 0 (0%) 2 (100%)

Defense/ilitary & viation 1 (7%) 0 (0%) 6 (40%) 3 (20%) 3 (20%) 2 (13%) 15 (100%)

Finance and ccounting 6 (30%) 5 (25%) 0 (0%) 2 (10%) 1 (5%) 6 (30%) 20 (100%)

Government 3 (44%) 0 (0%) 1 (14%) 1 (14%) 0 (0%) 2 (28%) 7 (100%)

Healthcare and iomedical 1 (25%) 0 (0%) 1 (25%) 0 (0%) 0 (0%) 2 (50%) 4 (100%)

IT and elecomunications 10 (32%) 5 (16%) 2 (6%) 3 (10%) 4 (13%) 7 (23%) 31 (100%)

Sofware utsourcing 7 (26%) 5 (18%) 0 (0%) 3 (11%) 5 (19%) 7 (26%) 27 (100%)

TOTAL 29 15 14 17 20 26

Fig. 18. The frequency of the participants who

model the concurrency view(s) of software systems

in UML.

Fig. 19. The UML diagrams used by the participants

for modeling the concurrency structure.

5

s

c

c

r

g

(

5

c

p

a

r

l

5

c

t

t

U

m

U

p

i

h

u

t

d

T

u

5

p

m

m

s

s
.5.2. Which UML diagram(s) do you use for modeling the concurrency

tructure of software systems (i.e., threads and processes)? (Q16)

As Fig. 19 shows, among the participants who use UML for the con-

urrency view modeling, 30% of them never use UML for modeling the

oncurrency structure and another 4% are not interested in the concur-

ency structure modeling. Concerning the rest, the top-used UML dia-

ram is the class diagram (75%), followed by the component diagram

25%).

.5.3. Which UML diagram(s) do you use for mapping the functional

omponents into the concurrency components? (Q17)

As shown in Fig. 20 , 35% of the participants do not use UML for map-

ing the functional components into the concurrency components and

nother 13% are not interested in the mapping at all. Concerning the

est, the top-used UML diagram is the component diagram (35%), fol-

owed by the composite structure and deployment diagrams (19–20%).

.5.4. Which UML modeling tool(s) do you use for modeling the

oncurrency views of software systems in UML? (Q18)

As Fig. 21 shows, 25% of the participants draw the UML models for

he concurrency views by hand on white papers. Concerning the par-

icipants using the UML tools, Enterprise Architect is the most popular
ML modeling tools (33%). As is the case with the functional and infor-

ation viewpoints, the office tools are again used much more than any

ML modeling tools (except Enterprise Architect).

Fig. 22 shows the correlation between the work industries of the

articipants and their tool choices for the concurrency view modeling

n UML. Enterprise Architect is again used in all the industries, except

ealthcare & biomedical. While MagicDraw and Visual Studio are also

sed by many industries, their usage ratios are not as high as that of En-

erprise Architect. Concerning the office tools, again, almost all the in-

ustries use them for the UML-based modeling of the concurrency views.

he only exception here is the defense/military & aviation industry, who

se Enterprise Architect and MagicDraw mainly.

.6. Development viewpoint

We consider Rozanski et al.’s three models for the development view-

oint, which are the module structure model, the source-code structure

odel, and the software build & release models. A module structure

odel for a software system is concerned with structuring the software

ource files into the software modules that have dependency relation-

hips with each other and grouping those modules into layers. A source-

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Fig. 20. The UML diagrams used by the participants

for modeling the mapping between the functional

and concurrency components.

Fig. 21. The UML modeling tools used by the par-

ticipants for modeling the concurrency view.

Fig. 22. The correlation between the work indus-

tries of the participants and the tool(s) that they use

for the concurrency view modeling in UML.

c

s

m

t

5

(

m

w

d

a

t

p

t

t

o

N

o

i

b

5

s

v

a

t

c

d

5

s

v
ode structure model is concerned with structuring the source code of a

oftware system into the source files. Software build & release process

odels are concerned with describing the tasks and their relationships

hat need to be performed in the build & release processes.

.6.1. Do you model the development view(s) of software systems in UML?

Q19)

As shown in Fig. 23 , many of the participants (64%) use UML for

odeling the development views at different levels of frequency. Those

ho do not do so have been directed to the next survey section (i.e., the

eployment viewpoint).

As Table 7 shows, IT & telecommunications, software outsourcing,

nd finance & accounting are the top-selected industries by the par-

icipants who model the development views in UML, and business ap-

lications software and web applications are the top-selected project

ypes. Concerning the correlations, the participants from the automo-

ive & transportation and defense/military & aviation industries focus

n the scientific/engineering applications software and system software.
ote that the participants from defense/military & aviation also focus

n the safety-critical and mission-critical software projects. The partic-

pants who work in the other industries considered focus more on the

usiness applications software and web applications projects.

.6.2. Which UML diagram(s) do you use for modeling the structure of

oftware modules? (Q20)

As Fig. 24 shows, among the participants who use UML for the de-

elopment view modeling, a few of them (18%) never use UML here and

nother 5% are not interested in modeling the software module struc-

ures at all. Concerning the rest, the top-used UML diagrams are the

omponent and package diagrams (47%), followed by the deployment

iagram (36%).

.6.3. Which UML diagram(s) do you use for modeling the source-code

tructures? (Q21)

As Fig. 25 shows, among the participants who use UML for the de-

elopment view modeling, more than one-third of them (38%) never

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Table 7

The distribution of the participants who model the development view depending on the work industries and the software projects involved.

Business

application

software

Mobile

application

Safety-critical

and

mission-critical

software

Scientific/

engineering

applications

software

Systems

software

Web

applications

Total

Automotive and transportation 1 (10%) 0 (0%) 2 (18%) 4 (36%) 4 (36%) 0 (0%) 11 (100%)

Consumer electonics 0 (0%) 0 (0%) 1 (50%) 0 (0%) 1 (50%) 0 (0%) 2 (100%)

Defense/ilitary & viation 1 (10%) 0 (0%) 3 (30%) 3 (30%) 3 (30%) 0 (0%) 10 (100%)

Finance and ccounting 9 (33%) 6 (22%) 0 (0%) 1 (4%) 2 (8%) 9 (33%) 27 (100%)

Government 5 (33%) 7 (7%) 2 (14%) 2 (14%) 2 (14%) 3 (21%) 15 (100%)

Healthcare and iomedical 1 (20%) 1 (20%) 1 (20%) 0 (0%) 0 (0%) 2 (40%) 5 (100%)

IT and elecomunications 14 (34%) 6 (14%) 1 (2%) 3 (7%) 4 (19%) 10 (24%) 42 (100%)

Sofware utsourcing 6 (27%) 4 (18%) 0 (0%) 3 (14%) 4 (18%) 5 (23%) 22 (100%)

TOTAL 29 15 14 14 15 27

Fig. 23. The frequency of the participants who

model the development view(s) of software systems

in UML.

Fig. 24. The UML diagrams used by the participants

for modeling the software module structure.

Fig. 25. The UML diagrams used by the participants

for modeling the source-code structure.

u

e

d

c

5

p

o

f

e

t

a

5

r

o

t
se UML here and another 11% did not show any interest towards mod-

ling the source-code structure. Concerning the rest, the top used UML

iagrams are the class and package diagrams (30-34%), followed by the

omponent diagram (25%).

.6.4. Which UML diagram(s) do you use for modeling the software build

rocess? (Q22)

As Fig. 26 shows, among the participants who use UML for the devel-

pment view modeling, more than half of them (55%) never use UML

or modeling the software build process, and another 11% are not inter-
sted in that at all. Concerning the rest, the top-used UML diagram is

he activity diagram (20%), followed by the sequence/communication

nd deployment diagrams (13-15%).

.6.5. Which UML diagram(s) do you use for modeling the software

elease process? (Q23)

As Fig. 27 shows, among the participants who use UML for the devel-

pment view modeling, half of them never use UML for the modeling of

he software release process and another 15% showed no interest at all.

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Fig. 26. The UML diagrams used by the participants

for modeling the software build process.

Fig. 27. The UML diagrams used by the participants

for modeling the software release process.

Fig. 28. The UML modeling tools used by the par-

ticipants for modeling the development view.

C

(

5

d

a

u

o

a

t

u

e

m

i

i

t

i

5

p

m

i

u

a

l

b

5

(

p

f

t

d
oncerning the rest, the top-used UML diagram is the activity diagram

22%), followed by the deployment and state diagrams (9-13%).

.6.6. Which UML modeling tool(s) do you use for modeling the

evelopment views of software systems in UML? (Q24)

As Fig. 28 shows, 17% of the participants do not use any UML tools

nd instead draw their development view models by hand. Among those

sing UML tools, Enterprise Architect has been shown the greatest level

f interest (33%). Again, some participants (23%) use the office tools so

s to specify the UML models for the development views.

The correlation between the work industries and the participants’

ool choices is given in Fig. 29 . So, the participants of each industry

se a varying set of tools for their UML-based development view mod-

ling. However, Enterprise Architect seems to be the top-used tool for

any industries including IT & telecommunications, finance & account-

ng, defense/military & aviation. Note that the healthcare & biomedical

ndustry mainly uses Visio, and the automative & transportation indus-

ry uses Rational Rhapsody. Also, the office tools are used in all the

ndustries, while no any UML modeling tools are actually so.
.7. Deployment viewpoint

We consider Rozanski et al.’s two models for the deployment view-

oint, which are the physical system structure model and deployment

odel. A physical system structure model is concerned with determin-

ng the physical components (e.g., processors, memory, offline storage

nit, client and server hardware units), in which the software systems

re deployed, and their physical connections (e.g., ethernet and wire-

ess connections). A deployment model is concerned with the mapping

etween the functional and physical components.

.7.1. Do you model the deployment view(s) of software systems in UML?

Q25)

As shown in Fig. 30 , most of the participants (75%) model the de-

loyment view of their software systems in UML at different levels of

requency. Those who never do so have been directed to the next sec-

ion of the survey (i.e., operational viewpoint).

As Table 8 shows, IT & telecommunications is the top-selected in-

ustry by the participants who model the deployment views in UML,

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Table 8

The distribution of the participants who model the deployment view depending on the work industries and the software projects involved.

Business

application

software

Mobile

application

Safety-critical

and

mission-critical

software

Scientific/

engineering

applications

software

Systems

software

Web

applications

Total

Automotive and transportation 3 (17%) 0 (0%) 6 (33%) 4 (22%) 4 (22%) 1 (6%) 18 (100%)

Consumer lectonics 0 (0%) 0 (0%) 1 (50%) 0 (0%) 1 (50%) 0 (0%) 2 (100%)

Defense/ilitary & viation 1 (7%) 0 (0%) 6 (44%) 3 (21%) 3 (21%) 1 (7%) 14 (100%)

Finance and ccounting 9 (32%) 6 (22%) 0 (0%) 2 (7%) 2 (7%) 9 (32%) 28 (100%)

Government 5 (37%) 1 (7%) 1 (7%) 1 (7%) 2 (14%) 4 (28%) 14 (100%)

Healthcare and iomedical 2 (40%) 0 (0%) 1 (20%) 0 (0%) 0 (0%) 2 (40%) 5 (100%)

IT and elecomunications 14 (32%) 7 (16%) 2 (4%) 3 (7%) 7 (16%) 11 (25%) 44 (100%)

Sofware utsourcing 6 (23%) 6 (23%) 0 (0%) 2 (8%) 5 (19%) 7 (27%) 26 (100%)

TOTAL 40 21 18 13 23 35

Fig. 29. The correlation between the work indus-

tries of the participants and the tool(s) that they use

for the development view modeling in UML.

Fig. 30. The frequency of the participants who

model the deployment view(s) of software systems

in UML.

a

s

f

i

t

T

b

t

e

5

s

d

m

d

d

5

c

p

U

a

m

d

5

d

e

c

E

t

t

m

o
nd, business applications software and web applications are the top-

elected project types. Concerning the correlations, the participants

rom the automotive & transportation and defense/military & aviation

ndustries focus on the safety-critical & mission-critical software, scien-

ific/engineering applications software, and systems software projects.

he participants from the rest of the industries focus essentially on the

usiness applications software and web applications. Note that the par-

icipants from finance & accounting and software outsourcing are inter-

sted in the mobile applications development too.

.7.2. Which UML diagram(s) do you use for modeling the physical

tructure of software systems? (Q26)

As shown in Fig. 31 , among the participants who use UML for the

eployment view modeling, a few of them (18%) do not use UML for

odeling the physical structure. Concerning the rest, the top-used UML

iagram is the deployment diagram (71%), followed by the component

iagram (29%).
.7.3. Which UML diagram(s) do you use for mapping the functional

omponents into physical components? (Q27)

As Fig. 32 shows, among the participants who use UML for the de-

loyment view modeling, almost one-third of them (31%) do not use

ML for the mapping herein and another 8% are not interested in that

t all. Concerning the rest, the top-used UML diagram is the deploy-

ent diagram (53%), followed by the package and composite structure

iagrams (19-23%).

.7.4. Which UML modeling tool(s) do you use for modeling the

eployment views of software systems in UML? (Q28)

As shown in Fig. 33 , a few participants (9%) specify their UML mod-

ls for the deployment views by hand without any tool support. Con-

erning the participants using UML tools, the top-used modeling tool is

nterprise Architect (45%). Also, some participants (20%) use the office

ools to specify their UML models herein.

Fig. 34 shows the correlation between the participants’ work indus-

ries and the tool they use for the UML-based modeling of the deploy-

ent views. Enterprise Architect is again the top-used UML tool for most

f the industries. The exceptions herein are the software outsourcing

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Fig. 31. The UML diagrams used by the participants for modeling the physical structure.

Fig. 32. The UML diagrams used by the participants for modeling the mapping between the functional and physical components.

Fig. 33. The UML modeling tools used by the par-

ticipants for modeling the deployment view.

Fig. 34. The correlation between the work industries

of the participants and the tool(s) that they use for the

deployment view modeling in UML.

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Fig. 35. The frequency of the participants who

model the operational view(s) of software systems

in UML.

a

l

t

5

t

c

m

s

e

e

f

w

a

o

t

s

f

t

a

t

s

s

i

5

(

t

h

b

v

t

o

a

t

f

a

a

s

p

a

t

s

o

5

i

e

U

p

5

a

m

e

m

t

a

5

c

d

e

f

n

c

(

g

5

i

t

e

s

C

c

t

5

m

m

e

h

g

i

q

nd healthcare industries where the office tools seem to be more popu-

ar. MagicDraw and Visio are also used in most of the industries, while

heir usage ratios are not as high as that of Enterprise Architect.

.8. Operational viewpoint

We consider Rozanski et al.’s six different models for the opera-

ional viewpoint, which are the installation model, migration model,

onfiguration management model, administration model, and support

odel. An installation model describes the software elements to be in-

talled/upgraded, any dependencies that may exist between different el-

ments, any system constraints, or undo plans in case of the installation

rrors. A migration model describes any strategies for (i) migrating data

rom some other existing systems, (ii) synchronizing some old systems

ith the new system, or (iii) reverting back to the old system in case of

ny problems. A configuration management model describes the groups

f configuration elements (e.g., database management, operating sys-

em, and application server configurations) and their dependencies, any

trategies for assigning configuration values, and any strategies for per-

orming the configuration changes. An administration model describes

he facilities for system monitoring and control, any administrative tasks

nd their dependencies, and any conditions for errors that administra-

ors need to detect and recover. Lastly, a support model describes the

takeholder groups that need to be supported, the incidents that require

upport, and the support providers and their coordinations for complex

ncidents.

.8.1. Do you model the operational view(s) of software systems in UML?

Q29)

As shown in Fig. 35 , the participants showed the least interest for

he UML-based modeling of the operational views. Indeed, more than

alf of the participants (61%) never use UML herein, and they all have

een directed to submit the survey without answering the operational

iewpoint questions.

As Table 9 shows, finance & accounting and IT & telecommunica-

ions are the top-selected industries by the participants who model the

perational views in UML, and business applications software and web

pplications are the top-selected project types. Concerning the correla-

ions, the participants from the automative and transportation industry

ocus on the business applications software and scientific/engineering

pplications software. The participants from the defense/military & avi-

tion industry focus on the safety-critical & mission-critical software,

cientific/engineering applications software, and systems software. The

articipants from the finance & accounting industry focuses on business

pplications software and mobile applications. The participants from

he rest of the industries focus essentially on the business applications

oftware and web applications. Note that the participants from software

utsourcing are interested in the mobile applications development too.
.8.2. Which UML diagram(s) do you use for modeling the system

nstallation elements and their dependencies? (Q30)

As Fig. 36 shows, among the participants who use UML for the op-

rational view modeling, more than one-third of them (36%) never use

ML herein. Concerning the rest, the top-used UML diagram is the com-

onent diagram (39%), followed by the deployment diagram (33%).

.8.3. Which UML diagram(s) do you use for modeling the system

dministration issues (e.g., required routine tasks, fault handling,

onitoring facilities, etc.)? (Q31)

As Fig. 37 shows, among the participants who use UML for the op-

rational view modeling, almost half of them (45%) never use UML for

odeling the system administration issues, and another 3% are not in-

erested in at all. Concerning the rest, the top-used UML diagram is the

ctivity diagram (36%), followed by use case diagram (30%).

.8.4. Which UML diagram(s) do you use for modeling the system

onfiguration issues (e.g., identifying the configuration groups and their

ependencies and any strategies for configuration changes)? (Q32)

As Fig. 38 shows, among the participants who use UML for the op-

rational view modeling, mre than half of them (52%) do not use UML

or modeling the system configuration issues (52%) and another 6% are

ot even interested in modeling the system configuration issues. Con-

erning the rest, the top-used UML diagram is the component diagram

21%), followed by the use case, activity, deployment, and class dia-

rams (12%).

.8.5. Which UML diagram(s) do you use for modeling the system support

ssues (e.g., the groups that need support, the types of support incidents, and

he support providers and their responsibilities)? (Q33)

As Fig. 39 shows, among the participants who use UML for the op-

rational view modeling, half of them never use UML for modeling the

ystem support issues and another 6% are not interested in that at all.

oncerning the rest, the top-used UML diagrams are the class and use

ase diagrams (16%), followed by the sequence/communication and ac-

ivity diagrams (13%).

.8.6. Which UML diagram(s) do you use for modeling the system

igration issues (e.g., strategies for migrating information and users, data

igration, and information synchronization)? (Q34)

As Fig. 40 shows, among the participants who use UML for the op-

rational view modeling, almost half of them (45%) never use UML

erein and another 12% are not interested in modeling the system mi-

ration issues at all. Concerning the rest, the top-used UML diagram

s the deployment diagram (21%), followed by the activity and se-

uence/communication diagrams (18%).

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Table 9

The distribution of the participants who model the operational view depending on the work industries and the software projects involved.

Business

application

software

Mobile

application

Safety-critical

and

mission-critical

software

Scientific/

engineering

applications

software

Systems

software

Web

applications

Total

Automotive and transportation 2 (25%) 0 (0%) 1 (12%) 3 (39%) 1 (12%) 1 (12%) 8 (100%)

Consumer lectonics 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Defense/ilitary & viation 0 (0%) 0 (0%) 4 (36%) 3 (27%) 3 (27%) 1 (10%) 11 (100%)

Finance and ccounting 6 (28%) 5 (24%) 0 (0%) 2 (10%) 2 (10%) 6 (28%) 21 (100%)

Government 3 (32%) 1 (12%) 1 (12%) 0 1 (12%) 3 (32%) 9 (100%)

Healthcare and iomedical 2 (50%) 0 (0%) 1 (25%) 0 (0%) 0 (0%) 1 (25%) 4 (100%)

IT and elecomunications 8 (38%) 4 (19%) 0 (0%) 2 (10%) 2 (10%) 5 (23%) 21 (100%)

Sofware utsourcing 3 (25%) 3 (25%) 0 (0%) 1 (8%) 1 (8%) 4 (34%) 12 (100%)

TOTAL 24 13 7 10 10 21

Fig. 36. The UML diagrams used by the partici-

pants for modeling the system installation elements.

Fig. 37. The UML diagrams used by the participants

for modeling the system administration issues.

Fig. 38. The UML diagrams used by the participants

for modeling the system configuration issues.

5

o

i

fi

i

p

p

p

i

E

q

d

a

i
.8.7. Which UML modeling tool(s) do you use for modeling the

perational views of software systems in UML? (Q35)

Fig. 41 shows that 23% of the participants never use UML tools and

nstead draw their models by hand. 16% of the participants use the of-

ce tools for modeling the operational views. The top used UML tool

s Enterprise Architect (45%). While MagicDraw is used by 13% of the

articipants, the rest of the UML modeling tools are rarely used by the

articipants.
Fig. 42 shows the correlation between the work industries and the

articipants’ tool choices for the UML-based operational view model-

ng. In almost all the industries, more than half of the practitioners use

nterprise Architect. MagicDraw and Obeo UML Designer are the other

uite popular UML modeling tools, which are used in many of the in-

ustries. Note that the office tools are not that popular this time, which

re even totally omitted in some industries such as software outsourc-

ng, healthcare, and defense/military. Also, surprisingly, the top-used

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

Fig. 39. The UML diagrams used by the participants

for modeling the system support issues.

Fig. 40. The UML diagrams used by the participants

for modeling the system migration issues.

Fig. 41. The UML modeling tools used by the par-

ticipants for modeling the operational view.

Fig. 42. The correlation between the work indus-

tries of the participants and the tool(s) that they use

for the operational view modeling in UML.

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

U

A

6

6

m

s

v

p

i

e

t

(

p

t

w

h

v

t

t

g

(

t

m

r

a

i

b

(

m

a

m

f

g

d

v

i

s

a

b

g

e

d

e

t

a

a

d

6

f

p

t

d

d

a

f

s

c

a

T

t

t

T

e

g

s

e

v

O

e

a

p

e

(

d

t

i

t

d

t

p

t

t

e

i

U

t

t

t

f

c

m

P

a

c

u

I

m

t

o

p

U

o

f

d

t

w

t

(

t

(

(

t

5 Enterprise Architect web-site: https://www.sparxsystems.com.au/ .
ML modeling tool for software outsourcing has been observed to be

stah.

. Discussions

.1. Summary of findings

While Section 5 discuses the survey results thoroughly, we sum-

arise below some of the key results obtained for each section of the

urvey. Note that we summarise the top-used UML notations for each

iewpoint in terms of the different model types that the viewpoints sup-

ort rather than indicating the UML diagram usages for the viewpoints

n general.

Profile questions . The survey attracted participants from 34 differ-

nt countries all over the world. USA is the top popular country among

he participants. The top-selected job positions are Software Architect

39%) and Software Developer/Programmer position (27%). The top-

opular industry is the IT & Telecommunications industry (30%). The

op-popular software project types are the Business Applications Soft-

are (54%) and Web Applications (43%). Most of the participants (81%)

ave 10+ years of experience on software development.

Functional viewpoint . 96% of the participants model the functional

iews of their software systems in UML. The top-used UML diagram for

he functional structure modeling is the class diagram (71%).

Information viewpoint . 99% of the participants model the informa-

ion views of their software systems in UML. The top-used UML dia-

rams are (i) the activity diagram for the data-flow modeling (65%),

 ii) the class diagram for the data structure modeling (85%), and (iii)

he sequence/communication and state diagrams for the data life-cycle

odeling (45–47%).

Concurrency viewpoint . 66% of the participants model the concur-

ency views of their software systems in UML. The top-used UML di-

grams are (i) the class diagram for the concurrency structure model-

ng (75%) and (ii) the component diagram for modeling the mapping

etween the functional components and the concurrent components

35%).

Development viewpoint . 64% of the participants model the develop-

ent views of their software systems in UML. The top-used UML di-

grams are (i) the component and package diagrams for the software

odule structure modeling (47%), (ii) the class and package diagrams

or the source-code structure modeling (30–34%), (iii) the activity dia-

ram for the software build process modeling (20%), and (vi) the activity

iagram for the software release process modeling (22%).

Deployment viewpoint . 75% of the participants model the deployment

iews of their software systems in UML. UML’s deployment diagram

s by-far the top-used diagram for modeling the physical structure of

oftware systems (71%), and this is followed by UML’s component di-

gram (29%). The top used UML diagram for modeling the mapping

etween the functional and physical component is the deployment dia-

ram (53%).

Operational viewpoint . Only 29% of the participants model the op-

rational views of their software systems in UML. The top-used UML

iagrams are (i) the class and deployment diagrams for the installation

lement modeling (33-39%), (ii) the activity and use-case diagrams for

he system administration modeling (30–36%), (iii) the component di-

gram for the system configuration modeling (21%), (vi) the use-case

nd class diagrams for the system support modeling (16%), and (v) the

eployment diagram for the system migration modeling (21%).

.2. Lessons learned

In our survey, we essentially used our knowledge and experience

rom our past surveys [14,17] . So, this really helped us in many as-

ects of the survey design and execution, including the preparation of

he survey questions (e.g., multiple-choice questions, question depen-

encies), determining the potential participants (e.g., using social me-
ia effectively, mailing lists, and reaching the practitioners involved in

cademic papers), and analysing the survey responses (e.g., coding for

ree-text answers).

We learned many lessons about how the practitioners who model

oftware architectures using UML approach towards a number of ar-

hitecture viewpoints proposed by Rozanski et al. [19] . The functional

nd information viewpoints are particularly the top-popular viewpoints.

hat is, practitioners are highly interested in modeling with UML (i)

he functional components that compose the systems and their interac-

ions and (ii) how those components store, access, and transmit the data.

he deployment viewpoint is also quite popular. Indeed, given UML’s

xplicit support for the deployment viewpoint via its deployment dia-

ram and some other diagrams that can also be used (e.g., composite

tructure diagram and package diagram), this is understandable. Mod-

ling UML-based software architectures from the concurrency and de-

elopment viewpoints is shown relatively less interest by practitioners.

ne important reason here could be UML’s lack of support for mod-

ling the concurrency and development issues. Indeed, UML does not

ctually provide any diagram types for modeling software threads and

rocesses and their concurrent interactions. Moreover, from our experi-

nce, most practitioners are not used to planning the development issues

e.g., source-code organisation and software build & release processes)

uring the modeling and design stage, and that is generally omitted un-

il the implementation stage. Rozanski et al.’s operational viewpoint is

gnored by most practitioners. This can again be attributed to practi-

ioners’ main focus on using UML for the software requirements and

esign modeling and their ignorance of the operational decisions about

he running system in its environment. However, it is highly crucial to

lan and analyse the operational concerns, such as administration, sys-

em support, configuration, and installation, and take the necessary ac-

ions early on before developing and running the software system in its

nvironment. Indeed, after the system development, dealing with such

ssues may require much more time and effort.

Another lesson learnt is about the UML modeling tools. While many

ML tools are available for practitioners’ use, the survey results reveal

hat Enterprise Architect (EA) 5 is by far the top-used UML modeling

ool for any viewpoints considered. While EA is essentially a commercial

ool that is not available as open-source, it provides several important

acilities for practitioners including simulation, model analysis for OCL

onstraints, roundtrip engineering, collaboration support, and project

anagement. The other popular UML modeling tools, such as Visual

aradigm, MagicDraw, IBM Rational Rhapsody, StarUML, and Modelio,

re rarely used by practitioners. Interestingly, the office tools (e.g., Mi-

rosoft Office) seem also to be quite popular among practitioners, who

se the office tools for drawing their UML-based software architectures.

t should however be noted that the office tools cannot process the UML

odels for, e.g., syntax checking and code generation, as is the case with

he UML modeling tools. Therefore, the UML models created with the

ffice tools may simply be used for documentation and communication

urposes only.

In the survey, we also observed that practitioners prefer a range of

ML diagrams for each model type that Rozanski et al. defined for each

f their architecture viewpoints. However, some UML diagrams are pre-

erred relatively more by practitioners. These are the component, class,

eployment, and activity diagrams. UML’s class diagram is practitioners’

op-choice for the following types of software models that are associated

ith different viewpoints: (i) the functional structure, (ii) the data struc-

ure, (iii) the concurrency structure, (iv) the software code structure, and

 v) the system installation & support. UML’s deployment diagram is the

op choice for the following types of models: (i) the physical structure,

 ii) the mapping between the functional and physical components, and

 iii) the system migration. UML’s activity diagram is the top-choice for

he following types of software models: (i) the data flow, (ii) the soft-

https://www.sparxsystems.com.au/

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

w

L

t

c

s

f

u

f

t

c

t

h

i

t

6

6

t

r

r

w

p

o

t

w

l

v

l

m

g

t

i

fi

g

s

s

p

t

a

s

f

d

d

w

t

&

6

r

a

t

p

e

i

6

w

g

s

b

a

b

v

w

m

d

b

d

h

e

t

t

U

f

s

a

s

c

m

t

fi

t

a

p

h

t

t

a

7

d

w

a

p

d

v

p

p

f

p

e

s

t

t

b

v

d

w

t

h

c

a

t

v

t

p

r

m
are build and release processes, and (iii) the system administration.

astly, UML’s component diagram is the top-choice for the following

ypes of software models: (i) the mapping between the functional and

oncurrent components, (ii) the software module structure, and (iii) the

ystem configuration. Note however that it is not possible to understand

or any model type what the top-preferred UML diagram(s) is actually

sed for. Indeed, while UML class diagram is practitioners’ top-choice

or the functional structure modeling, we cannot know whether practi-

ioners use the class diagram for decomposing systems into functional

omponents or modeling the decomposed components’ internal struc-

ures. Therefore, another lesson to be learnt here could be that we could

ave asked the practitioners to further indicate what exactly they spec-

fy with the chosen UML diagram for the model type in question so as

o enhance precision.

.3. Threats to validity

.3.1. Internal validity

The internal validity is concerned with the cause-effect relationships

hat may be influenced by some unknown variables and lead to biased

esults. So, to minimise any internal threats, we did not consider any

esponses that come from the participants with no experience in soft-

are development and UML modeling. Indeed, such participants may

otentially introduce some unknown variables that affect the analysis

f the results. As discussed in Section 4.2 , the responses received from

he academics with no industry background and from the practitioners

ho never use UML have been omitted in the survey.

Another source of internal threats is to do with the non-random se-

ection of the participants, which may potentially introduce unknown

ariables. While we used our personal contacts and the pre-determined

ist of practitioners from the scientific papers on relevant topics, we got

ost of the participations from the online social platforms (i.e., linkedin

roups, mailing lists, google groups, and forums) that essentially mimic

he random selection of the participants. Indeed, the potential partic-

pants using those social platforms each have got an equal chance of

lling in the survey. As discussed in Section 4.3 , the survey received the

reatest amount of responses from the relevant linkedin groups and the

everal mailing lists of Eclipse and IEEE. So, this reveals that most of the

urvey participants have actually been chosen randomly from among the

ractitioners who have been using the online social platforms.

Moreover, the survey participants represent the diverse profiles of

he community, which essentially reduces the risk of getting affected by

ny unknown variables that may occur when the participants all repre-

ent a particular profile only. Indeed, the participants hold several dif-

erent job positions that involve software development (e.g., architect,

eveloper, managerial positions, systems engineer, etc.) and work on

ifferent types of software projects (e.g., web applications, systems soft-

are, business applications, mobile applications, etc.) in different indus-

ries (e.g., IT & telecommunications, finance & accounting, automative

 transportation, etc.).

.3.2. External validity

The external validity is concerned with to which extent the survey

esults can be generalized to the entire population of practitioners who

re involved in software development. To minimize any threats against

he external validity, we intended to target the participants from diverse

rofiles. So, our survey has been participated by 109 different practition-

rs from 34 different countries and those participants vary in their work

ndustries, job positions, software projects, and experiences.

.3.3. Construct validity

The construct validity is essentially concerned with the extent to

hich the survey results aid in answering the research questions tar-

eted. To minimise any threats, the participants data have been analysed

tatistically. That is, for each survey question, the participant votes have
een counted and stored in the MS Office Excel tool, which enabled to

nalyse the data statistically and visualise the analysis results via charts.

The mono-operation bias has been minimised as the survey data have

een received from the participants of 34 different countries who are in-

olved in various project types and work in several different industries.

To reduce any biases due to the inexact definitions of constructs,

e ignore practitioners’ usage of the UML diagrams for the viewpoints

odeling in general and rather put our main focus on learning the UML

iagrams used for different types of models in each viewpoint that can

e specified in the system views (e.g., the data flow, data structure, and

ata life-cycle model types for the information viewpoint). It should

owever be noted that we did not aim in our survey to understand for

ach model type what specific concerns practitioners tend to model with

he UML diagrams that they choose. Indeed, it is not clear as to whether

he practitioners who specify the functional structure model with the

ML class diagram use the class diagram particularly for the system’s

unctional decomposition into components or the components’ internal

tructures.

Moreover, the online survey form informs any potential participants

bout the goal of the survey and get their consent before starting the

urvey. So, this avoids any participants from filling the survey without

learly understanding what the survey is about. To further minimise any

isunderstanding and ambiguities, we supplemented each survey sec-

ion that consists of the questions of a particular viewpoint with the of-

cial web-site link of Rozanski et al.’s book. As discussed in Section 4.1 ,

hese links provide precise information about the viewpoints and can

void any wrong interpretations of the survey questions by the partici-

ants.

Lastly, for each viewpoint section in the survey, the participants

ave been firstly asked how frequently they use that software archi-

ecture viewpoint in their UML modeling. If the participant states that

hey never use, we direct him/her to the next section and prevent from

nswering the questions about that viewpoint.

. Conclusion

The survey discussed in this paper attracted 109 participants from 34

ifferent countries, who represent the different profiles in terms of the

ork industries, job positions, the types of software projects involved,

nd years of experiences. According to the survey results, most of the

ractitioners (88%) use UML in modeling their software systems from

ifferent architecture viewpoints. Among the considered architecture

iewpoints (i.e., functional, information, concurrency, development, de-

loyment, and operational), the top popular viewpoints in which the

articipants model their systems using UML are the functional and in-

ormation viewpoints (96–99%). The operational viewpoint is the least

opular one, ignored by 61% of the participants in their software mod-

ling with UML. Each software architecture viewpoint has been con-

idered in terms of different types of models that can be specified in

hat viewpoint. The survey results reveal the UML diagrams that prac-

itioners prefer for each viewpoint model. The functional viewpoint has

een addressed with the functional structure model; the information

iewpoint has been addressed with the data flow, data structure, and

ata life-cycle models; the concurrency viewpoint has been addressed

ith the concurrency structure model and the mapping model between

he functional and concurrency components; the development viewpoint

as been addressed with the software module structure, software source-

ode, and build & release models; the deployment viewpoint has been

ddressed with the physical structure model and the mapping model be-

ween the functional and physical components; lastly, the operational

iewpoint has been addressed with the system installation, administra-

ion, configuration, support, and migration models. Moreover, Enter-

rise Architect has been observed to be the top used UML modeling tool

egardless of the viewpoints considered. Indeed, the rest of the UML

odeling tools have been observed to be rarely used. Note also that

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

s

w

X

t

m

s

w

e

a

a

s

t

b

t

w

W

p

a

t

o

g

d

t

t

i

p

t

t

o

c

r

p

m

D

i

t

C

v

i

e

A

s

t

a

l

t

t

S

t

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
ome practitioners seem to use the office tools for specifying their soft-

are systems from different architecture viewpoints.

The results of this survey study are planned to be validated via the

IVT project, 6 which is labeled by the European Union’s EUREKA Clus-

er programme ITEA (Information Technology for European Advance-

ent). To validate the survey results, a set of case-studies will be de-

igned and executed in different industries that the project partners

ork in, such as Turkcell for telecommunications, Arcelik for consumer

lectronics, and Bombardier for aviation. The design of the case-studies

nd the data collection and analysis will be performed systematically in

ccordance with the well-established guidelines, e.g., [47] . Each case-

tudy will focus on a real problem that is considered to be crucial for

he project partner working in a particular industry of interest and can

e solved with a software development. A pre-determined set of practi-

ioners working for the project partner will be expected to create soft-

are models to design their solutions from different set of viewpoints.

e plan to collect data by observing the techniques and tools that the

ractitioners prefer to use while modeling and asking the practitioners

 pre-determined set of questions during and after their modeling ac-

ivities. After validating the survey results, we will use the results for

ur works on designing and developing domain-specific modeling lan-

uages for different industries. So, we will determine for any particular

omains (e.g., automotive, defense, transportation, and telecommunica-

ion) (i) the set of modeling viewpoints to be supported, (ii) the popular

ypes of viewpoint models in which practitioners tend to create models

n that domain, and (iii) the types of visual notation sets for the view-

oint models that are more likely to be accepted by practitioners in

hose industries. Moreover, we also plan to determine and analyse all

he existing software architecture viewpoint frameworks that offer a set

f viewpoints for the architecture descriptions. By doing so, we aim to

ompare the existing frameworks based on some pre-determined set of

equirements including the scope, the supported viewpoints, the view-

oint descriptions (e.g., the concerns addressed, the different types of

odels supported), and the support for the viewpoint consistencies.

eclaration of Competing Interest

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper.

RediT authorship contribution statement

Mert Ozkaya: Conceptualization, Methodology, Data curation, In-

estigation, Writing - original draft, Writing - review & editing, Visual-

zation. Ferhat Erata: Methodology, Investigation, Writing - review &

diting.

cknowledgments

We would like to thank all the participants who contributed to our

urvey. Moreover, we also would like to express our sincere gratitude

o Nick Rozanski and Eoin Woods for their inspiring book on software

rchitecture viewpoints that motivates us for the survey. Also, we would

ike to thank again Eoin Woods for his highly useful feedback regarding

he survey design & execution and his help on disseminating the survey

o many practitioners.

upplementary material

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.infsof.2020.106275 .
6 XIVT web-site: https://itea3.org/project/xivt.html .

[

eferences

[1] D.E. Perry, A.L. Wolf, Foundations for the study of software architecture, SIGSOFT

Softw. Eng. Notes 17 (4) (1992) 40–52, doi: 10.1145/141874.141884 .

[2] D. Garlan , M. Shaw , An introduction to software architecture, Technical Report,

Pittsburgh, PA, USA, 1994 .

[3] P.C. Clements , D. Garlan , R. Little , R.L. Nord , J.A. Stafford , Documenting software

architectures: views and beyond, in: L.A. Clarke, L. Dillon, W.F. Tichy (Eds.), ICSE,

IEEE Computer Society, 2003, pp. 740–741 .

[4] P. Kruchten, The 4+1 view model of architecture, IEEE Softw. 12 (6) (1995) 42–50,

doi: 10.1109/52.469759 .

[5] D. Soni, R.L. Nord, C. Hofmeister, Software architecture in industrial ap-

plications, in: Proceedings of the 17th International Conference on Software

Engineering, in: ICSE ’95, ACM, New York, NY, USA, 1995, pp. 196–207,

doi: 10.1145/225014.225033 .

[6] P. Clements , D. Garlan , L. Bass , J. Stafford , R. Nord , J. Ivers , R. Little , Documenting

Software Architectures: Views and Beyond, Pearson Education, 2002 .

[7] J. Garland , R. Anthony , Large-Scale Software Architecture: A Practical Guide Using

UML, first ed., Wiley Publishing, 2002 .

[8] M.W. Maier, D. Emery, R. Hilliard, Software architecture: introducing ieee standard

1471, Computer 34 (4) (2001) 107–109, doi: 10.1109/2.917550 .

[9] M. Ozkaya, The analysis of architectural languages for the needs of practitioners,

Softw. Pract. Exp. 48 (5) (2018) 985–1018, doi: 10.1002/spe.2561 .

10] Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos, E. Elsen,

F. Ham, A. Aiken, K. Duraisamy, E. Darve, J. Alonso, P. Hanrahan, Liszt: a domain

specific language for building portable mesh-based PDE solvers, in: Proceedings

of 2011 International Conference for High Performance Computing, Networking,

Storage and Analysis, in: SC ’11, ACM, New York, NY, USA, 2011, pp. 9:1–9:12,

doi: 10.1145/2063384.2063396 .

11] R. Membarth, O. Reiche, F. Hannig, J. Teich, M. Krner, W. Eckert, Hipacc: a domain-

specific language and compiler for image processing, IEEE Trans. Parallel Distrib.

Syst. 27 (1) (2016) 210–224, doi: 10.1109/TPDS.2015.2394802 .

12] C.L. Conway, S.A. Edwards, NDL: a domain-specific language for device drivers,

SIGPLAN Not. 39 (7) (2004) 30–36, doi: 10.1145/998300.997169 .

13] J.E. Rumbaugh , I. Jacobson , G. Booch , The unified modeling language reference

manual, Addison-Wesley-Longman, 1999 .

14] M. Ozkaya, What is software architecture to practitioners: asurvey, in: S. Ham-

moudi, L.F. Pires, B. Selic, P. Desfray (Eds.), MODELSWARD 2016 - Proceedings of

the 4rd International Conference on Model-Driven Engineering and Software De-

velopment, Rome, Italy, 19–21 February, 2016., SciTePress, 2016, pp. 677–686,

doi: 10.5220/0005826006770686 .

15] A. Forward, T.C. Lethbridge, Problems and opportunities for model-centric

versus code-centric software development: a survey of software profession-

als, in: Proceedings of the 2008 International Workshop on Models in Soft-

ware Engineering, in: MiSE ’08, ACM, New York, NY, USA, 2008, pp. 27–32,

doi: 10.1145/1370731.1370738 .

16] A. Tiso, F. Ricca, M. Torchiano, G. Reggio, F. Tomassetti, Preliminary findings from

a survey on the md state of the practice, in: 2011 International Symposium on

Empirical Software Engineering and Measurement(ESEM), 00, 2011, pp. 372–375,

doi: 10.1109/ESEM.2011.51 .

17] M. Ozkaya, Do the informal & formal software modeling notations satisfy practi-

tioners for software architecture modeling? Inf. Softw. Technol. 95 (2018) 15–33,

doi: 10.1016/j.infsof.2017.10.008 .

18] M. Ozkaya , Analysing UML-based software modelling languages, J. Aeronaut. Space

Technol. 11 (2) (2018) 119–134 .

19] N. Rozanski , E. Woods , Software Systems Architecture: Working With Stakeholders

Using Viewpoints and Perspectives, Addison-Wesley Professional, 2005 .

20] B. Bauer , J.P. Müller , J. Odell , AgenT UML: a formalism for specifying multiagent

software systems, Int. J. Softw. Eng. Knowl. Eng. 11 (3) (2001) 207–230 .

21] T. Lodderstedt , D.A. Basin , J. Doser , SecureUML: a UML-based modeling language

for model-driven security, in: J. Jézéquel, H. Hußmann, S. Cook (Eds.), UML 2002 -

the Unified Modeling Language, 5th International Conference, vol. 2460, Dresden,

Germany, September 30–October 4, 2002, Springer, 2002, pp. 426–441 .

22] J. Jürjens , UMLsec: extending UML for secure systems development, in: J. Jézéquel,

H. Hußmann, S. Cook (Eds.), UML 2002 - the Unified Modeling Language, 5th Inter-

national Conference, vol. 2460, Dresden, Germany, September 30–October 4, 2002,

Springer, 2002, pp. 412–425 .

23] Q.Z. Sheng , B. Benatallah , ContextUML: a UML-based modeling language for mod-

el-driven development of context-aware web services, in: ICMB, IEEE Computer So-

ciety, 2005, pp. 206–212 .

24] B. Selic , Using UML for modeling complex real-time systems, in: LCTES, in: Lecture

Notes in Computer Science, 1474, Springer, 1998, pp. 250–260 .

25] R. Martinho , D. Domingos , J. Varajão , FlexUML: a UML profile for flexible pro-

cess modeling, in: SEKE, Knowledge Systems Institute Graduate School, 2007,

pp. 215–220 .

26] SoaML_1_0_1 , Service Oriented Architecture Modeling Language (SoaML) Specifica-

tion, Version 1.0.1, Object Management Group, 2012 .

27] O.M. Group , Software Process Engineering Metamodel Specification, Technical Re-

port, Object Management Group, 2002 .

28] L. Balmelli , An overview of the systems modeling language for products and systems

development, J. Object Tech. 6 (6) (2007) 149–177 . www.sysml.org

29] D. Dori, N. Wengrowicz, Y.J. Dori, A comparative study of languages for model-based

systems-of-systems engineering (MBSSE), in: 2014 World Automation Congress

(WAC), 2014, pp. 790–796, doi: 10.1109/WAC.2014.6936160 .

30] P. Andersson, M. Höst, UML and SystemC – A Comparison and Mapping Rules

for Automatic Code Generation, Springer Netherlands, Dordrecht, pp. 199–209,

doi: 10.1007/978-1-4020-8297-9_14 .

https://doi.org/10.1016/j.infsof.2020.106275
https://itea3.org/project/xivt.html
https://doi.org/10.1145/141874.141884
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0002
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0003
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0003
https://doi.org/10.1109/52.469759
https://doi.org/10.1145/225014.225033
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0006
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0007
https://doi.org/10.1109/2.917550
https://doi.org/10.1002/spe.2561
https://doi.org/10.1145/2063384.2063396
https://doi.org/10.1109/TPDS.2015.2394802
https://doi.org/10.1145/998300.997169
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0013
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0013
https://doi.org/10.5220/0005826006770686
https://doi.org/10.1145/1370731.1370738
https://doi.org/10.1109/ESEM.2011.51
https://doi.org/10.1016/j.infsof.2017.10.008
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0018
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0019
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0020
http://refhub.elsevier.com/S0950-5849(20)30025-2/otheref1111
http://refhub.elsevier.com/S0950-5849(20)30025-2/otheref1111
http://refhub.elsevier.com/S0950-5849(20)30025-2/otheref1111
http://refhub.elsevier.com/S0950-5849(20)30025-2/otheref1111
http://refhub.elsevier.com/S0950-5849(20)30025-2/txtrf0002
http://refhub.elsevier.com/S0950-5849(20)30025-2/txtrf0002
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0022
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0023
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0024
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0025
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0026
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0026
https://doi.org/10.1109/WAC.2014.6936160
https://doi.org/10.1007/978-1-4020-8297-9_14

M. Ozkaya and F. Erata Information and Software Technology 121 (2020) 106275

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

31] R. Bendraou , J. Jézéquel , M. Gervais , X. Blanc , A comparison of six UML-based

languages for software process modeling, IEEE Trans. Softw. Eng. 36 (5) (2010)

662–675 .

32] L. Brisolara, L. Becker, L. Carro, F. Wagner, C.E. Pereira, R. Reis, Comparing high-

level modeling approaches for embedded system design, in: Proceedings of the ASP-

DAC 2005. Asia and South Pacific Design Automation Conference, 2005., 2, 2005,

pp. 986–989, doi: 10.1109/ASPDAC.2005.1466505 .

33] A. Belghiat , E. Kerkouche , A. Chaoui , M. Beldjehem , Mobile agent-based

software systems modeling approaches: a comparative study, CIT 24 (2) (2016)

149–163 .

34] M. Petre , UML in practice, in: Proceedings of the 2013 International Conference

on Software Engineering, in: ICSE ’13, IEEE Press, Piscataway, NJ, USA, 2013,

pp. 722–731 .

35] A. Nugroho, M.R. Chaudron, A survey into the rigor of UML use and its

perceived impact on quality and productivity, in: Proceedings of the Sec-

ond ACM-IEEE International Symposium on Empirical Software Engineering and

Measurement, in: ESEM ’08, ACM, New York, NY, USA, 2008, pp. 90–99,

doi: 10.1145/1414004.1414020 .

36] S. Wrycza , B. Marcinkowski , A light version of UML 2: survey and outcomes, in:

Proceedings of the 2007 Computer Science and IT Education Conference, University

of Technology Mauritius Press, 2007 .

37] C. Lange, M. Chaudron, J. Muskens, In practice: UML software architecture

and design description, IEEE Softw. 23 (2) (2006) 40–46, doi: 10.1109/MS.2006.50 .

38] H. Osman, A. van Zadelhoff, D.R. Stikkolorum, M.R.V. Chaudron, UML class dia-

gram simplification: what is in the developer’s mind? in: Proceedings of the Second

Edition of the International Workshop on Experiences and Empirical Studies in Soft-

ware Modelling, in: EESSMod ’12, ACM, New York, NY, USA, 2012, pp. 5:1–5:6,

doi: 10.1145/2424563.2424570 .
39] A.M. Fernndez-Sez, D. Caivano, M. Genero, M.R.V. Chaudron, On the use of UML

documentation in software maintenance: results from a survey in industry, in: 2015

ACM/IEEE 18th International Conference on Model Driven Engineering Languages

and Systems (MODELS), 2015, pp. 292–301, doi: 10.1109/MODELS.2015.7338260 .

40] B. Dobing, J. Parsons, Current practices in the use of UML, in: Proceedings of the

24th International Conference on Perspectives in Conceptual Modeling, in: ER’05,

Springer-Verlag, Berlin, Heidelberg, 2005, pp. 2–11, doi: 10.1007/11568346_2 .

41] M. Grossman, J.E. Aronson, R.V. McCarthy, Does UML make the grade? Insights from

the software development community, Inf. Softw. Technol. 47 (6) (2005) 383–397,

doi: 10.1016/j.infsof.2004.09.005 .

42] G. Reggio , M. Leotta , F. Ricca , Who knows/uses what of the UML: a personal opin-

ion survey, in: J. Dingel, W. Schulte, I. Ramos, S. Abrahão, E. Insfran (Eds.), Mod-

el-Driven Engineering Languages and Systems, Springer International Publishing,

Cham, 2014, pp. 149–165 .

43] L.T.W. Agner, I.W. Soares, P.C. Stadzisz, J.M. SimãO, A Brazilian survey on UML

and model-driven practices for embedded software development, J. Syst. Softw. 86

(4) (2013) 997–1005, doi: 10.1016/j.jss.2012.11.023 .

44] R. Popping, Analyzing open-ended questions by means of text analysis procedures,

Bull. Sociol. Methodol. 128 (1) (2015) 23–39, doi: 10.1177/0759106315597389 .

45] T. Punter, M. Ciolkowski, B.G. Freimut, I. John, Conducting on-line surveys in soft-

ware engineering, in: 2003 International Symposium on Empirical Software Engi-

neering (ISESE 2003), 30 September–1 October 2003. Rome, Italy, IEEE Computer

Society, 2003, pp. 80–88, doi: 10.1109/ISESE.2003.1237967 .

46] R.L. Scheaffer , W. Mendenhall , L. Ott , Elementary Survey Sampling, Duxbury Press,

North Scituate, MA, 1986 .

47] P. Runeson, M. Höst, Guidelines for conducting and reporting case study re-

search in software engineering, Empir. Softw. Eng. 14 (2) (2009) 131–164,

doi: 10.1007/s10664-008-9102-8 .

http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0028
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0028
https://doi.org/10.1109/ASPDAC.2005.1466505
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0030
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0031
https://doi.org/10.1145/1414004.1414020
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0033
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0033
https://doi.org/10.1109/MS.2006.50
https://doi.org/10.1145/2424563.2424570
https://doi.org/10.1109/MODELS.2015.7338260
https://doi.org/10.1007/11568346_2
https://doi.org/10.1016/j.infsof.2004.09.005
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0039
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0039
https://doi.org/10.1016/j.jss.2012.11.023
https://doi.org/10.1177/0759106315597389
https://doi.org/10.1109/ISESE.2003.1237967
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0043
http://refhub.elsevier.com/S0950-5849(20)30025-2/sbref0043
https://doi.org/10.1007/s10664-008-9102-8

	A survey on the practical use of UML for different software architecture viewpoints
	1 Introduction
	1.1 Motivation and goal
	1.2 Paper structure

	2 Related work
	2.1 Similar viewpoint frameworks
	2.2 UML and some analytical studies on UML
	2.2.1 Surveys on UML

	3 Research questions
	4 Survey design, execution, and sampling
	4.1 Survey design
	4.2 Survey execution
	4.3 Survey sampling

	5 Survey findings and results
	5.1 Profiles
	5.1.1 The work countries of the participants (Q1)
	5.1.2 The current job positions of the participants (Q2)
	5.1.3 The work industries of the participants (Q3)
	5.1.4 The types of software projects that the participants are involved in (Q4)
	5.1.5 The participants’ experience on software development (Q5)

	5.2 UML for different software architecture viewpoints (Q6)
	5.3 Functional viewpoint
	5.3.1 Do you model the functional view(s) of software systems in UML? (Q7)
	5.3.2 Which UML diagram(s) do you use for modeling the functional structure of software systems? (Q8)
	5.3.3 Which UML modeling tool(s) do you use for modeling the functional views of software systems in UML? (Q9)

	5.4 Information viewpoint
	5.4.1 Do you model the information view(s) of software systems in UML? (Q10)
	5.4.2 Which UML diagram(s) do you use for modeling the data flow of software systems? (Q11)
	5.4.3 Which UML diagram(s) do you use for modeling the data structure of software systems? (Q12)
	5.4.4 Which UML diagram(s) do you use for modeling the data life-cycle of systems (i.e., how data changes over time)? (Q13)
	5.4.5 Which UML modeling tool(s) do you use for modeling the information views of software systems in UML? (Q14)

	5.5 Concurrency viewpoint
	5.5.1 Do you model the concurrency view(s) of software systems in UML? (Q15)
	5.5.2 Which UML diagram(s) do you use for modeling the concurrency structure of software systems (i.e., threads and processes)? (Q16)
	5.5.3 Which UML diagram(s) do you use for mapping the functional components into the concurrency components? (Q17)
	5.5.4 Which UML modeling tool(s) do you use for modeling the concurrency views of software systems in UML? (Q18)

	5.6 Development viewpoint
	5.6.1 Do you model the development view(s) of software systems in UML? (Q19)
	5.6.2 Which UML diagram(s) do you use for modeling the structure of software modules? (Q20)
	5.6.3 Which UML diagram(s) do you use for modeling the source-code structures? (Q21)
	5.6.4 Which UML diagram(s) do you use for modeling the software build process? (Q22)
	5.6.5 Which UML diagram(s) do you use for modeling the software release process? (Q23)
	5.6.6 Which UML modeling tool(s) do you use for modeling the development views of software systems in UML? (Q24)

	5.7 Deployment viewpoint
	5.7.1 Do you model the deployment view(s) of software systems in UML? (Q25)
	5.7.2 Which UML diagram(s) do you use for modeling the physical structure of software systems? (Q26)
	5.7.3 Which UML diagram(s) do you use for mapping the functional components into physical components? (Q27)
	5.7.4 Which UML modeling tool(s) do you use for modeling the deployment views of software systems in UML? (Q28)

	5.8 Operational viewpoint
	5.8.1 Do you model the operational view(s) of software systems in UML? (Q29)
	5.8.2 Which UML diagram(s) do you use for modeling the system installation elements and their dependencies? (Q30)
	5.8.3 Which UML diagram(s) do you use for modeling the system administration issues (e.g., required routine tasks, fault handling, monitoring facilities, etc.)? (Q31)
	5.8.4 Which UML diagram(s) do you use for modeling the system configuration issues (e.g., identifying the configuration groups and their dependencies and any strategies for configuration changes)? (Q32)
	5.8.5 Which UML diagram(s) do you use for modeling the system support issues (e.g., the groups that need support, the types of support incidents, and the support providers and their responsibilities)? (Q33)
	5.8.6 Which UML diagram(s) do you use for modeling the system migration issues (e.g., strategies for migrating information and users, data migration, and information synchronization)? (Q34)
	5.8.7 Which UML modeling tool(s) do you use for modeling the operational views of software systems in UML? (Q35)

	6 Discussions
	6.1 Summary of findings
	6.2 Lessons learned
	6.3 Threats to validity
	6.3.1 Internal validity
	6.3.2 External validity
	6.3.3 Construct validity

	7 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Supplementary material
	References

