
Contents lists available at ScienceDirect

Journal of Computer Languages

journal homepage: www.editorialmanager.com/cola/default.aspx

Reviews

Understanding Practitioners’ Challenges on Software Modeling: A Survey
Mert Ozkaya⁎,a, Ferhat Eratab
a Yeditepe University, Department of Computer Engineering, Istanbul, Turkey
b Yale University, Department of Computer Science, New Haven, CT, USA

A R T I C L E I N F O

Keywords:
model-driven software development
software modeling challenges
practitioners
survey

A B S T R A C T

Software modeling is considered as the high-level design technique for describing abstract statements about
software systems. While some practitioners create models for the early analysis of their design decisions and
generating code from their models, some practitioners create models for the eased communication among sta-
keholders. There also exist practitioners who ignore modeling and directly proceed with coding. We aim in this
paper to understand the challenges that practitioners face with in their software modeling activities. We sur-
veyed 80 practitioners from 18 countries who work in 18 different industries. We focussed on 8 categories of
software modeling challenges: (i) managing the language complexity, (ii) extending modeling languages, (iii)
domain-specific modeling environments, (iv) developing formal modeling languages, (v) analysing models, (vi)
separation of concerns, (vii) transforming models, and (viii) managing models. As the results show, the se-
paration of concerns is the least challenging category for practitioners, while analysing models is the top
challenging category. Various concrete challenges in different categories have been observed, including (i) using
the modeling languages with steep learning-curve, (ii) extending the language semantics without inconsistencies
and updating the language tools accordingly, (iii) evolving the DSL tools with new requirements, (iv) defining
the languages’ formal semantics in terms of the translations in any formal languages, (v) decomposing models
into separate viewpoints and analysing the consistencies between different viewpoint models, (vi) the consistent
model transformation and the model synchronisations, (vii) using model checkers for formal analysis, and (viii)
versioning models.

1. Introduction

Modeling has been used in many branches of engineering for so
many years as the method of abstraction for managing the complexity
of systems. With models, complex systems can actually be described in
terms of abstract statements and models are considered to be correct if
those statements are correct with regard to the systems modeled [1].
Indeed, one cannot construct an automobile that consists of several
systems without creating meaningful models and dealing with each
model separately. Again, a bridge that are to be used by vehicles cannot
be handled without modeling. The situation is exactly the same for
software systems, where the complexity of software can be handled by
means of abstraction (i.e., modeling) [2,3]. Software modeling is ex-
tremely useful in many aspects, including the understandability and
communication of the software solutions via a simplified notation, the
precision of the modeled solutions, making judgements about the real
system to be built, producing the executable systems from models.

To create software models, many alternatives are available essen-
tially. These include the use of simple boxes-and-lines, any natural
languages, and the modeling languages with concrete syntax and

semantics. While the simple boxes-and-lines and natural languages may
essentially be used for communication and documentation, the models
created with languages can be processed via the supporting tools.
Unified Modeling Language (UML) [4] is one of the most popular
software modeling languages, which offers a comprehensive graphical
notation set for the modeling of software systems from different per-
spectives (e.g., logical, behaviour, deployment, information, etc.). Fol-
lowing UML, many software modeling languages have been proposed,
including architecture description languages, formal specification lan-
guages, domain-specific modeling languages, and UML-based software
modeling languages [5,6].

1.1. Motivation and Goal

While software modeling has been actively researched since the
nineties and that led to tens of different software modeling languages
and their supporting toolset, practitioners in different industries still do
not show the expected level of interest to software modeling. As Selic
indicated [2], practitioners are concerned about many issues that make
them consider models as untrustworthy and requiring too much effort.

https://doi.org/10.1016/j.cola.2020.100963
Received 25 August 2019; Received in revised form 24 January 2020; Accepted 16 March 2020

⁎ Corresponding author.

Journal of Computer Languages 58 (2020) 100963

Available online 06 April 2020
2590-1184/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/25901184
https://www.editorialmanager.com/cola/default.aspx
https://doi.org/10.1016/j.cola.2020.100963
https://doi.org/10.1016/j.cola.2020.100963
https://doi.org/10.1016/j.cola.2020.100963
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2020.100963&domain=pdf


Indeed, models cannot always be specified precisely, which makes it
really hard to validate the models before considering them for im-
plementing the actual software systems. Also, there is a semantic gap
between models and code that make practitioners have some big dif-
ficulties in reflecting their design decisions into the actual software
implementation. Software modeling languages suffer from many issues
too, which has been revealed with several surveys conducted recently,
e.g., [6–9]. These include the steep learning curve of the modeling
languages with formal semantics, informal languages’ lack of precision
and analysis support, languages’ weak tool support for forward and
reverse engineering, lack of extensibility, lack of support for multiple
viewpoints, etc. Given all, one may wish to learn about the challenges
that practitioners in different industries face with on software mod-
eling. However, as discussed in Section 4, while many survey studies
have been conducted on software modeling, none of them really focus
on the practitioners’ challenges on software modeling.

So, in this paper, a survey is aimed to be conducted among practi-
tioners who work in diverse industries to understand the categories of
challenges that practitioners face with and the concrete challenges of
the practitioners in each category. The survey results are expected to be
very helpful for understanding the particular types of challenges that
practitioners are commonly concerned about in their software modeling
activities. The challenges determined herein will also trigger any po-
tential contributions between academia and industry for proposing
solutions to the challenges determined.

To determine the categories of challenges, France et al.’s seminal
work has been considered [10], which provides a comprehensive and
systematic overview of the major challenges on software modeling and
enables the reader to understand the different categories of modeling
challenges along with the discussions of the concrete challenges in each
category that practitioners may face with. Note here that practitioners
can either be the meta-modelers who design and develop modeling
languages or modelers who use those modeling languages for their
specific problems. France et al. essentially proposed 8 different types of
challenges, which are (i) managing the language complexity, (ii) ex-
tending modeling languages, (iii) domain-specific modeling environ-
ments, (iv) developing formal modeling languages, (v) analysing
models, (vi) separation of concerns, (vii) transforming models, and (viii)
managing models. Managing the language complexity is concerned
with any challenges that meta-modelers face with while describing
their language definitions (i.e., syntax and semantics) and modelers’
experiences with the syntax and semantics of the languages. Extending
modeling languages is concerned with any challenges that modelers
face with while using any extensible modeling languages to extend the
language definitions for their particular problems. Domain-specific
modeling environments are concerned with any challenges that
modelers face with while using domain-specific languages (DSLs) and
their supporting tools. Developing formal modeling languages is con-
cerned with any challenges that meta-modelers face with while defining
the formal semantics of their DSLs. Analysing models is concerned with
any challenges that modelers face with while analysing their software
models to detect the design errors. The separation of concerns is con-
cerned with any challenges that modelers face with while modeling
their software systems from different viewpoints that each deal with a
particular concern. Transforming models is concerned with meta-
modelers’ challenges on designing, implementing, and testing the ade-
quate model transformation tools and techniques and modelers’ chal-
lenges on using those techniques for transforming the models into any
other useful forms. Lastly, managing models is concerned with any is-
sues that modelers face with while performing different modeling ac-
tivities such as model specification, model versioning, model transfor-
mation, and realising models.

2. Research Questions

In this survey study, the following research questions are focussed

for the purpose of meeting the goal indicated in Section 1.1.
RQ1 - What levels of challenges do practitioners face with for the dif-

ferent categories of software modeling challenges? In this research ques-
tion, France et al.’s 8 categories of modeling challenges that have been
introduced in Section 1.1 are focussed upon. So, the goal is to (i) de-
termine for each challenge category of France et al. the level of cruci-
ality considered by the practitioners and (ii) compare the different
challenge categories in terms of the cruciality levels chosen by the
practitioners. The cruciality levels can be either (i) no challenges at all,
(ii) some challenges, (iii) average level of challenges, (iv) many chal-
lenges, (v) lots of challenges. Note here that practitioners are also al-
lowed to type any other challenges that are not given in France et al.’s
list.

RQ2 - What are the concrete challenges that practitioners face with in
each category of challenges while modeling software systems? In this re-
search question, the goal is to determine for each challenge category of
France et al. which concrete challenges are the top-concerns of practi-
tioners. The list of concrete challenges to be considered for each chal-
lenge category has been determined from France et al.’s challenge de-
scriptions in [10], which have also been summarised in Section 5. Note
that practitioners are also allowed to state any other concrete chal-
lenges for each challenge category that are different from those in-
cluded in the pre-defined list of concrete challenges.

3. Survey Design, Execution, and Sampling

3.1. Survey Design

Previously, we have conducted some other survey studies [7,11],
which actually made us gain the necessary knowledge and experience
in designing a survey. So, in our survey discussed in this paper, we
easily conducted such activities as preparing the survey questions and
answers, separating them into meaningful sections, conducting an ef-
fective plot study, and searching for the potential participants.

Before releasing the survey, we conducted a pilot study among 5
different participants. These participants include the academics who are
highly experienced on the survey design and execution and the prac-
titioners who have considerable experiences on software modeling.
Each participant has been contacted via e-mail and given 7 days to
return their feedback for the survey questions attached to the e-mails as
a pdf file. In the e-mail, the participants have been kindly requested to
pay attention to the following set of aspects: (i) any missing, ambig-
uous, or misleading questions and answers, (ii) the coherence of the
survey sections, (iii) any needed supplementary materials, (iv) the
minimum and maximum amount of time required to fill in the survey,
and (v) the completeness and consistency of the survey questions with
regard to the research questions. As a result, we got very useful feed-
back from the participants and managed to correct all the issues de-
tected.

After the pilot study, the survey design has been finalised with 19
different questions that are given in Table 1. So, the first two questions
are intended for understanding the participants’ profiles (i.e., work
country and industry). Moreover, as aforementioned, the survey focuses
on the list of software modeling challenge categories that has been
proposed by France et al. [10]. Thus, a separate survey section is in-
troduced for France et al.’s each challenge category, which consists of
two questions. That is, one question is for learning the level of chal-
lenges faced with and targets the first research question in Section 2,
and another question is for learning the type(s) of challenges faced with
on that category and targets second research question. Note here that
the question for determining the types of challenges focus on the list of
challenges that France et al. discuss for each category. While the
questions for determining the level of challenges are designed as single-
choice questions, the questions for determining the types of challenges
are designed as multiple-choice questions with the free text options.
The single-choice answers for a question have been structured precisely

M. Ozkaya and F. Erata Journal of Computer Languages 58 (2020) 100963

2



in terms of multiple options one of which may only be chosen by the
participants. These options are (i) no challenges at all, (ii) some chal-
lenges, (iii) average level of challenges, (iv) many challenges, and (v)
lots of challenges. The multiple-choice answers for a question enable
the participants to choose one or more answers for the question. The
free-text option enables the participants to type their own answers for
the question. So, the participants who are not satisfied with the existing
answer list of the question may state their own answers via the free-text
option. The free-text answers have been analysed using the coding
strategy [12]. That is, each free-text answer for a question is first
evaluated to determine whether it can be considered as any of the an-
swers in the answer-list. Otherwise, a new answer is introduced for the
question. If the free-text answer does not make sense for the question,
we omit that without introducing a new answer. Lastly, the question 19
in Table 1 is included in the survey for letting the participants type in
free-text mode any other challenges that do not match with France
et al.’s category list.

3.2. Survey Execution

The survey has been available online via google forms1 and open for
accepting responses between March 2019 and August 2019. Our survey
essentially focuses on determining the software modeling challenges
that practitioners from different industries face with. To this end, we
aimed to invite in our survey the participants who have some experi-
ences on software modeling and development. However, we also ac-
cepted any participations from those who do not actually have any
experiences in software modeling but do have something to say about
the challenges on software modeling. By doing so, the goal is to learn
also from the participants who have not performed modeling before due
to some challenges.

To reach as many practitioners as possible who can fill the survey in,
we followed a systematic approach. That is, we initially used our per-
sonal contacts that we have obtained from the previous research pro-
jects which we have been involved in. We sent e-mails to 50 different
industrial partners of our past projects and requested them to partici-
pate in the survey and share the survey with anyone whom they know
and consider as the potential participant(s) (i.e., snow-balling). As a
result, we got 15 participations from our industrial partners. Moreover,
we determined 125 different practitioners who contributed to the
academic papers that are about software modeling. Note here that we

considered the academic papers on software modeling that are highly
cited and indexed by google-scholar. However, we just got 10 partici-
pations from the authors of the papers. Besides, we determined all re-
levant mailing lists that focus on software modeling & development.
These include the mailing lists of the eclipse (e.g., sirius-dev, graphiti-
dev, papyrus-rt-dev, emf-dev, and papyrus-sysml-users), AADL mailing
list, Netbeans mailing list, the mailing lists of netbeans, IEEE archi-
tecture description mailing list, and some other e-mailing lists (e.g. the
apache software foundation, UML Sculptor, and UML DWG). Having
sent e-mails to all of these mailing-lists, we got 25 participations from
the practitioners who have been registered to the mailing-lists. We also
used the social platforms effectively. To this end, we firstly shared the
survey link in many linkedin groups, including software architecture,
software developer, model driven architecture, software design patterns
and architecture, model-based software engineering, and the enterprise
architecture network. Besides linkedin, we use the twitter platform and
shared the survey on our twitter accounts. We also requested the soft-
ware modelers followed by thousands of people to retweet (i.e., share)
our post. We further shared the survey in some popular software de-
velopment forums, including code-project, dani-web, code-guru, bytes,
eclipse forums, code ranch, and source-forge. While the linkedin groups
and twitter brought us approximately 20 different participations, the
forums also brought 10 participations. So, as a result, we have received
80 different participations for our survey2.

3.3. Survey Sampling

We initially determined the sampling unit that represents the cluster
of the population from which we have selected the participants. So, we
focussed on the group of practitioners who have been involved in
software modeling and development in different industries or do have
negligible experiences but faced with challenges on software modeling.

To create the sample that suits the definition of our sampling unit,
we actually considered two choices – i.e., probability sampling or non-
probability sampling. The probability sampling requires that every
single member has the equal chance of being selected for the survey
participation. In the non-probability sampling, the participants shall be
selected non-randomly depending on their conveniences. While the
probability sampling is better than the non-probability sampling in
minimising the biases as each individual in the population have equal

Table 1
The survey questions

Res. Que. Survey Questions Multiple Answer Free Text Single Answer

Profile Questions 1-Which country do you work in? X X
2-Which industry(ies) do you develop software products for? X X

RQ1 3-Indicate the level of challenges that you face in the category of ”Managing Language Complexity”. X
RQ2 4-What type(s) of challenges do you face in the category of ”Managing Language Complexity”? X X
RQ1 5-Indicate the level of challenges that you face in the category of ”Extending Modeling Languages”. X
RQ2 6-What type(s) of challenges do you face in the category of ”Extending Modeling Languages”? X X
RQ1 7-Indicate the level of challenges that you face in the category of ”Domain-specific Modeling Environments”. X
RQ2 8-What type(s) of challenges do you face in the category of ”Domain-specific Modeling Environments”? X X
RQ1 9-Indicate the level of challenges that you face in the category of ”Developing Formal Modeling Languages”. X
RQ2 10-What type(s) of challenges do you face in the category of ”Developing Formal Modeling Languages”? X X
RQ1 11-Indicate the level of challenges that you face in the category of ”Analysing Models”. X
RQ2 12-What type(s) of challenges do you face in the category of ”Analysing Models”? X X
RQ1 13-Indicate the level of challenges that you face in the category of ”Supporting Separation of Design

Concerns”.
X

RQ2 14-What type(s) of challenges do you face in the category of ”Supporting Separation of Design Concerns”? X X
RQ1 15-Indicate the level of challenges that you face in the category of ”Transforming Models”. X
RQ2 16-What type(s) of challenges do you face in the category of ”Transforming Models”? X X
RQ1 17-Indicate the level of challenges that you face in the category of ”Managing Models”. X
RQ2 18-What type(s) of challenges do you face in the category of ”Managing Models”? X X
RQ2 19-List below the challenges that you face in ”Other Modeling Categories”. X

1 https://docs.google.com/forms

2 The survey questions and the collected survey data can be accessible via the
following link: https://doi.org/10.5281/zenodo.3571492

M. Ozkaya and F. Erata Journal of Computer Languages 58 (2020) 100963

3

https://docs.google.com/forms
https://doi.org/10.5281/zenodo.3571492


chance of being selected randomly, it is not necessarily feasible as we
do not have enough time and budget to reach every member of the
population. Therefore, we used the non-probability sampling and se-
lected the participants non-randomly in the way explained in
Section 3.2. However, we also tried to imitate the random selection by
sharing the survey link in the social platforms, including linkedin,
forums, and mailing lists, where most of the practitioners who develop
software systems have been registered with and are expected to follow
the discussions and any posts shared. Indeed, any participants using
those social platforms whom we do not know have equal chance of
participating in the survey.

4. Related Work

The literature includes several survey studies that aim to reveal the
challenges which practitioners face with while performing software
modeling activities. Many of these works focus on particular problem
domains and determine practitioners’ challenges while applying the
software modeling for those problems. These include modeling in par-
ticular domains (e.g., embedded systems, high-performance computing,
and industry 4.0), variability modeling, using UML for modeling, ap-
plying product-line engineering for the modeling language develop-
ments, tool support for modeling, and considering non-functional
properties in modeling. Some other works focus on the modeling lan-
guages and surveyed practitioners to understand their perspectives to-
wards different types of languages or analysed the existing languages to
determine any missing points. However, unlike our survey, none of
these works essentially aimed to learn practitioners’ challenges on
software modeling in general with no particular focus on any domains
and do this in a systematic way that uses any well-established list of
general challenges on software modeling.

In [7], the author surveyed among 115 different practitioners from
28 different countries to understand practitioners’ knowledge and ex-
perience on the formal and informal software modeling languages. In
his survey, the author also aimed to understand practitioners’ motiva-
tions/demotivations for the modeling languages. In [8], Malavolta et al.
interviewed 48 practitioners from 40 IT companies with the goal of
understanding their expectations from the architecture modeling lan-
guages. Malavolta et al. revealed in their survey the practitioners’
challenges on the architectural languages, including formal languages’
steep learning curve and the lack of support for the model analysis. In
[13], Forward et al. surveyed 113 practitioners to understand their
experiences on software modeling and why many practitioners stay
away from software modeling. To this end, Forward et al. asked 18
questions to different types of practitioners, including software devel-
oper, software modeler, code generators, software veterans, and real-
time developers, and analysed their survey results separately. In [14],
Liebel et al. surveyed 113 practitioners so as to understand their use of
the model-based software development (MBSD) for the embedded sys-
tems domain. Liebel et al.’s survey further identified a number of
challenges, such as the weak tool support (e.g., tool integration and
interopability) and the high effort needed for the MBSD training. In
[15], Mohagheghi et al. surveyed the 25 papers that discuss some
empirical studies on model-driven engineering (MDE) and aimed to
understand the industries where MDE is used, MDE’s level of maturity
in those areas, MDE’s effect on the productivity and software quality
properties. While Mohagheghi et al. focused mainly on the advantages
of MDE, some challenges have also been reported including the lack of
support for the scalable modeling environment and domain-specific
modeling, using models in software processes, the complexity of mod-
eling, specifying platform-independent models, and creating models for
legacy systems. In [16], Berger et al. focused on the variability mod-
eling and surveyed 42 practitioners so as to understand the modeling
notations and tools used by the practitioners for the variability mod-
eling and practitioners’ perspectives towards the variability modeling
(i.e., the benefits and challenges). Concerning the challenges, Berger

et al. considered any complexity issues that practitioners suffer from,
which includes the model visualisation, dependency management,
model evolution, configuration process, and traceability. In [17], Lange
et al. surveyed 80 architects to understand their UML usage for the
modeling of software systems from the viewpoints of Kruchten [18].
The architects also stated the challenges on their UML modeling that
are about the scattered information, incompleteness, disproportion, and
inconsistency. In [19], Tomassetti et al. surveyed 155 Italian practi-
tioners so as to understand the extent to which the companies in Italy
apply modeling in their software development projects. Tomassetti
et al.’s survey results indicated some challenges such as the lack of
popularity in industry, complex modeling notations (e.g., UML’s variety
of diagrams), weak tool support for code-generation, the lack of support
for an integrated toolset for the entire development life-cycle (including
versioning and deployment). In [20], Wortmann et al. focus on the use
of modeling in industry 4.0 and analysed 408 different publications that
consider modeling for industry 4.0. Wortmann addressed several re-
search questions that are concerned about the modeling in industry 4.0,
including the benefits of using modeling languages for industry 4.0, the
challenges that practitioners face with in modeling for industry 4.0, the
modeling languages used, and the research methods employed by the
papers. In [21], Kosar et al. analysed 390 different papers on DSLs so as
to understand the current researches conducted on the DSL develop-
ment and the observed challenges. Kosar et al. considered many re-
search questions including DSLs’ contributions, the types of research
methods used by DSLs, DSLs’ focus area, the trends in the DSL research,
the top-cited DSL papers, the most active institutions on the DSL re-
search, the number of publications per year, and the top conferences/
journals. In [22], Czech et al. analysed 189 best practices from 19
different publications that are employed for dealing with the challenges
on developing the domain-specific modeling languages and their tools.
Czech et al. grouped the best practice challenges in terms of the
planing, analysis, design, implementation, maintenance, and testing
phases categorised them depending on their relevances (i.e., the do-
main model, language design and concepts, language notation, gen-
erators, DSL-tooling, metamodel tooling, and the entire DSM-solution).
In [23], Mendez-Acuna et al. analysed 38 different articles that discuss
the application of the software product line engineering for the DSL
development and considered their support for the life-cycle of the
language product line engineering, the technological spaces of the ap-
proaches (the support for abstract and concrete syntaxes and seman-
tics), and the open issues on the language product line engineering. The
open issues are intended for revealing the challenges on the analysis,
design, testing, and evolution of the language product line engineering.
In [24], Lelandais et al. focus on modeling in the area of high perfor-
mance computing (HPC). To this end, Lelandais et al. considered two of
their projects that offer the modeling platforms (with the DSL and
modeling editor support) for designing the simulators to be used in
HPC. Lelandais et al. stated many lessons learned from those projects on
applying the model-driven approach on HPC. Moreover, Lelandais et al.
also stated the challenges observed, including the interaction between
heterogenous models, the lack of tool support for adopting DevOps,
extending the meta-models and models, multiple users’ concurrent ac-
cess on the same model, and technological dependencies. In [25],
Storrle surveyed 96 practitioners to understand the practitioners’ mo-
tivations for modeling and how they create models. Storrle aimed to
determine to what extent UML (or any other conceptual modeling
languages) is used in industry, the reasons for the practitioners to create
software models, the different usage modes (i.e., the activities in which
the models are used), and the frequency of the user modes. Storrle also
received the participants’ opinions about modeling, which revealed
some challenges such as lack of adequate tool support, generating code,
and formal modeling. In [26], Whittle et al. interviewed 17 practi-
tioners to determine a taxonomy of the modeling tools, which cate-
gorises the modeling tool support in terms of the technical factors, in-
ternal and external organisational factors, and social factors. Each

M. Ozkaya and F. Erata Journal of Computer Languages 58 (2020) 100963

4



factor has been categorised into some generic tool-related features,
which have been further sub-categorised into specific features. Whittle
et al. later on interviewed another set of practitioners to understand
what kinds of challenges that the interviewees face with regarding each
of these features. In [27], Ameller et al. interviewed the practitioners
from 18 companies so as to understand to what extent the non-func-
tional properties (NFPs) of software systems are considered in the
software modeling activities. To this end, Ameller et al. focused on
understanding the existing model-driven development (MDD) ap-
proaches’ support for NFPs, practitioners’ experiences with modeling
the NFPs, and the benefits of managing NFPs during software modeling.
Ameller et al. also considered the challenges that practitioners face with
when the NFPs are not supported by the MDD approaches.

5. Survey Findings and Results

5.1. Q1: Participants’ Country of Work

The survey attracted participants from 18 different countries. As
Figure 1 shows, most of the participants are from the countries in the
Europe continent, which is followed by those from America. While the
number of the participants from the countries in Asia is relatively less,
we could not attract any from Africa. Note that just 1% of the partici-
pants are from Australia.

5.2. Q2: Participants’ Work Industries

As Figure 2 shows, the top industries in which the participants work
are the IT & Telecommunications and Automotive & Transportation.
These are followed by the Finance & Accounting, Defense/Military &
Aviation, Research, and Computer industries. The industries such as
Retail, Semiconductor, Robotics, and Supply Chain showed the least
interest to the survey.

5.3. Q3, Q5, Q7, Q9, Q11, Q13, Q15, Q17: The level of challenges that the
participants face with for each category of modeling challenges

Figure 3 shows the level of challenges that the participants face with
for each category of challenges considered in the survey. So, the se-
paration of design concerns is relatively less concerning for the parti-
cipants. Indeed, the percentage of the participants who chose either ”no

challenges at all” or ”some challenges” is the greatest for the separation
of design concerns. Extending modeling languages is not so concerning
either because of the same reason. However, analysing models can be
considered highly concerning for many participants, given the fewest
participants who have chosen the ”no challenges at all” or ”some
challenges” levels. Likewise, developing formal languages and mana-
ging language complexity are also quite concerning. The other cate-
gories of the modeling challenges (i.e., transforming models, domain-
specific modeling environments, and managing models) are essentially
found challenging at an average level by many participants.

5.4. Q4: The type(s) of challenges that practitioners face in the category of
”Managing Language Complexity”

France et al. discuss a list of challenges on managing the language
complexity. Meta-modelers occasionally need to modify the language
definition that consists of the language syntax and semantics for new
domain requirements. However, this may cause a number of challenges,
including the consistency of the changes made on the meta-model, the
changed meta-model’s impact on the other elements, and the com-
pleteness of changed meta-model. Also, modelers may be challenged by
the languages whose notation set requires a steep learning curve and
thus difficult to learn and use. Another challenge that modelers may
face with is to do with using a modeling language with a small notation
set that may not necessarily be helpful for modeling a large set of
problems in different domains of industries.

As Figure 4 shows, modelers’ top concern (43-45%) is the languages’
complex notation sets with steep learning curve. On the other hand,
practitioners have got the least concerns on using any languages with a
small notation set for the modeling of diverse domains of problems.
Some participants stated other challenges on managing the language
complexity that are not included in the question’s answer list. These
challenges are on (i) defining/using the design patterns/styles, (ii) the
languages’ ambiguous notation sets, (iii) the lack of user guides that
explain when/how to use the language notations, (iv) composing
multiple languages together to benefit their capabilities at the same
time, (v) the lack of technical support teams, and (vi) the lack of sup-
port for the information modeling (e.g., data flow, data state, and data
life-cycle).

Fig. 1. The countries of the participants

M. Ozkaya and F. Erata Journal of Computer Languages 58 (2020) 100963

5



5.5. Q6: The type(s) of challenges that practitioners face in the category of
”Extending Modeling Languages”

Many extensible modeling languages have been proposed so far,
which support various extension mechanisms (e.g., annex description,
tool support, sub-typing, inheritance, property annotation, and XML)
for extending the language syntax and semantics definitions for dif-
ferent domain needs [6]. Modelers who use the extensible languages
may however face with challenges that hinder the extension process for
the specific needs of the modelers. These challenges are on extending an
extensible language with some domain-specific notations, modifying
the semantics of the language, providing a new semantics definition for
the language (e.g., the formal, process-algebraic semantics for formal
analysis), ensuring the consistency between existing and newly-defined
language semantics, and updating the language tools in accordance
with the language semantics.

As Figure 5 shows, the top concerns of the language users are to do
with adding some new language semantics without causing any in-
consistencies and updating the language tools in accordance with the
newly defined semantics. Modifying the existing semantics of a lan-
guage or introducing new notations are not so challenging for the users.

5.6. Q8: The type(s) of challenges that practitioners face in the category of
”Domain-specific Modeling Environments”

Domain-specific modeling environments enable the modelers to
create domain-specific models and perform some useful operations on
them such as the quality property analysis and code-generation. AADL
[28] is for instance one of the most popular domain-specific languages
(DSLs) for the real-time embedded systems domain, which offers sev-
eral tools for the modeling, analysis, simulation, and implementation of
the embedded systems. While domain-specific modeling environments
help the modelers address many domain-specific problems, modelers
may face with several challenges in their use of DSLs and their tools.
One of the challenges herein may be due to the need for using the
different DSL versions on the same model so as to benefit the facilities
that come with the newer versions. Another possible challenge can be
on using and integrating multiple DSLs together for the same problem
and interchanging the models created in different DSLs. Also, the tools
provided for the DSLs do not necessarily satisfy the modelers, and
therefore, modelers may wish to evolve the DSL tools for the domain
needs (e.g., adding new analysers, code generators, and simulators),
which may cause some challenges for the modelers.

As Figure 6 shows, the most challenging issue herein is evolving the
DSL tools with some new domain requirements. This is followed by the

Fig. 2. The work industry of the participants

Fig. 3. The level of challenges that the participants face with for each category of modeling challenges

M. Ozkaya and F. Erata Journal of Computer Languages 58 (2020) 100963

6



challenge of integrating multiple DSLs together. On the other hand,
most participants are not concerned about having to use different ver-
sions of the same DSLs on the same model. A few participants stated
some other challenges on the domain-specific modeling platforms that
are not included in the above given list of the question. These include
the challenges on (i) the co-evolution of the language and its models
and (ii) the weak tool support and technical support teams. Also, one
participant indicated that the current DSLs focus more on the computer
science domains rather than the application domains.

5.7. Q10: The type(s) of challenges that practitioners face in the category of
”Developing Formal Modeling Languages”

To enable the precise modeling and formal analysis, the semantics
of DSLs need to be defined formally. The semantics of DSLs can be
defined formally by means of the translations in any formal specifica-
tion languages that are based on formal methods [29]. Note here that
such DSLs are actually known as the formal modeling languages. The
formal models corresponding to the DSL models that satisfy the se-
mantics definitions of the DSLs can can then be formally analysed via
the supporting model checkers or theorem provers of the formal spe-
cification languages (e.g., the SPIN model checker of the ProMeLa
language [30]). However, the meta-modelers may face with many dif-
ferent challenges here in the process of defining the formal semantics of
their DSLs. Firstly, it may not necessarily be easy to devise the trans-
lation algorithms for translating DSLs’ high-level notation sets into the
lower-level (and most probably algebraic) notation sets of the formal
specification languages. Indeed, the formal specification languages that
the meta-modelers use may require a steep learning curve (i.e., difficult
to learn and use) [8]. Also, developing a translator tool for automating
the translation between the DSL model and formal model in accordance
with the formal semantics can be considered as another challenge.
Moreover, one may need to verify the correctness of the translations
between the DSL and formal models that are performed by the tools.

As Figure 7 shows, nearly half of the participants are concerned about
the formal specification languages’ steep learning curve, designing the
algorithms for translating the DSL models in any formal specification
language, and ensuring the correctness of the translation. Integrating the
translators with DSLs for automatically translating the models created in
DSLs in any formalisms is not challenging for many participants. Some
participants further indicated different challenges from those given in the
question’s answer list. These challenges are that (i) the formal modeling

languages are not applicable in practice and (ii) the existing DSLs that are
integrated with model checkers do not visualise the model checking results
to a more understandable format, (iii) languages’ weak tool support, and
(iv) formalising the natural languages in different domains and disciplines.

5.8. Q12: The type(s) of challenges that practitioners face in the category of
”Analysing Models”

Modelers may wish to analyse their software models to check that
the software models satisfy the system’s functional and non-functional
properties. So, if the software models are analysed to be correct, one
can then proceed with implementing the design decisions. One of the
potential challenges herein is to do with the formal model analysis. As
discussed in Section 5.7, the formal modeling languages may provide
modelers with translators that can produce formal models in ac-
cordance with the language semantics. Then, the formal models can be
exhaustively analysed via the supporting model checkers (or theorem
provers). However, the formal model analysis herein may be challen-
ging due to several reasons, such as the high-learning curve for the
model checking tools and their input languages (i.e., the formal speci-
fication language in which the translation is performed), the state-space
explosion problem, the lack of visualisation for the analysis results, etc.
Simulating the model behaviours is another area of concern, which
enables to simulate the execution of the systems over models and ob-
serve the system behaviours to detect any anomalies or make predic-
tions about the system properties. Modelers may find the model simu-
lation challenging due to some reasons such as the language tools’
simulation support, the simulation techniques supported, visualisation
support, etc. Lastly, modelers’ use of the model-based testing techniques
[31] may be considered challenging, which are essentially concerned
with generating test-cases from the system requirements models.

As Figure 8 shows, many of the participants (62%) are concerned
about analysing the software models exhaustively using the formal
techniques. While model simulation is also quite challenging for the
participants, model-based testing is not so. A few participants indicated
some further challenges that are not listed. The lack of model analysis
tools (and guidelines) that are equivalent to the program analysis tools/
guidelines (e.g., SEI CERT3 and MISRA4) and that promote the model

Fig. 4. The type(s) of challenges that practitioners face in the category of ”Managing Language Complexity”

Fig. 5. The type(s) of challenges that practitioners face in the category of ”Extending Modeling Languages”

3 https://tools.netsa.cert.org/
4 https://www.misra.org.uk/

M. Ozkaya and F. Erata Journal of Computer Languages 58 (2020) 100963

7

https://tools.netsa.cert.org/
https://www.misra.org.uk/


analysis for the functional/non-functional system requirements is one
of the concerns herein. Also, some participants face with challenges on
the model traceability analysis. Another concern is the lack of lan-
guages/tools for performing exhaustive model analysis without having
to be involved in any formalisms.

5.9. Q14: The type(s) of challenges that practitioners face in the category of
”Supporting Separation of Design Concerns”

The separation of design concerns aids the modelers in decomposing
their large and complex models in terms of different viewpoints that
each describe the design decisions on a particular issue (e.g., behaviour,
concurrency, physical, operational, information, and development).
Modelers however may face with several problems herein. Firstly,
modelers may be challenged with figuring out how to separate the
software architecture specifications of their systems into a set of inter-
related viewpoints and deal with each viewpoint and their relationships
separately. Also, the existing DSLs may not necessarily be helpful for
the multiple-viewpoints modeling due to the reasons such as the lack of
support for (i) re-using the popular viewpoint frameworks (e.g.,
Kruchten’s 4+1 viewpoint [18]), (ii) creating new viewpoints con-
sisting of architectural rules and constraints, (iii) and processing the
viewpoint models for, e.g., analysis and code generation. Another po-
tential challenge can be on the capability of analysing the different
viewpoint models regarding their relationships, e.g., any incon-
sistencies between the viewpoint models, the completeness of the
viewpoint models. Indeed, while modelers sometimes use the DSLs with
the multiple-viewpoints modeling support, the DSL tools may not pro-
vide the analysis support at an adequate level. Also, modelers may wish
to analyse their viewpoint models for their user-defined properties.
Lastly, modelers may prefer to use the aspect-oriented software mod-
eling. The aspects herein each represent any functional/non-functional
requirements that concern the different components of the system but
are unrelated to the components’ main functionalities [32]. So, separ-
ating the aspects from system components enhances the components’
modularity and their analysability. While many modeling languages
and software frameworks have been existing that use aspects, it is un-
clear to what extent modelers are satisfied with those approaches and
whether they face with any challenges or not.

As Figure 9 shows, the top challenging issues herein are the ability of
separating software architectures into different viewpoint models and

analysing the relationships between the viewpoint models (44-46%).
While the use of DSLs for the multiple-viewpoint modeling is not so
concerning, the aspect-oriented modeling techniques are not considered as
challenging by most of the participants. Besides the above discussed
challenges on the separation of design concerns, a few participants pro-
posed their own challenges. These challenges are on (i) the development
viewpoint modeling, (ii) modeling software systems at different granu-
larity levels, (iii) the lack of support for the multiple users working on the
different viewpoint models at the same time, and (iv) the successful
composition of the different viewpoint models to an entire system model.

5.10. Q16: The type(s) of challenges that practitioners face in the category
of ”Transforming Models”

Model transformation is essentially modelers’ one of the main mo-
tivations for specifying the models of their software systems. Indeed,
models can be transformed for many different reasons, such as mod-
ifying the models to enhance the quality, improving the model under-
standing and communication, model analysis, and model implementa-
tion. Modelers who transform their models may actually face with some
challenges that affect the quality of the transformation. So, to learn
about those challenges, we consider the model refactoring, model re-
finement, model abstraction, model synchronisation, consistency of the
model transformation, and testing the model transformation. Model
refactoring is concerned with improving the software structure models
without changing their behaviours. Model refinement is concerned with
adding new, further details on the software models. Model abstraction
is concerned with reducing the software model complexity without
damaging its precision. Sychronisation transformation is concerned
with the changes on a model that trigger another change in another
model. Modelers may also wish to ensure that the transformation is
performed consistently such that the target and source models do not
conflict with each other. Lastly, testing the model transformation to
validate that the transformation is performed correctly is another
challenge here, which actually concerns the meta-modelers who are
supposed to develop the translators for the DSLs.

As Figure 10 shows, the top-concerns are to do with ensuring the
consistent transformation from the source model into the target model
and keeping the source and target models synchronised. While the model
abstraction is also found quite challenging, the other possible challenges
(i.e., model refactoring, model refinement, and testing the model

Fig. 6. The type(s) of challenges that the participants face in the category of ”Domain-specific Modeling Environments”

Fig. 7. The type(s) of challenges that practitioners face in the category of ”Developing Formal Modeling Languages”

M. Ozkaya and F. Erata Journal of Computer Languages 58 (2020) 100963

8



transformation) are relatively less concerning for the participants. A few
participants indicated that they face with other challenges on (i) keeping
the code and model synchronised even after modifying either of them
depending on the results obtained via the model/program analysis tools
and (ii) the lack of tool support for model transformation.

5.11. Q18: The type(s) of challenges that practitioners face in the category
of ”Managing Models”

To perform model-driven software development, many activities need
to be performed such as specifying the models with DSLs, and analysing,
versioning, tracking, transforming, and realising the models. Modelers
may face with challenges on the management of the above modeling ac-
tivities. Realising models is concerned with implementing the software
models in the same way as specified. Model versioning is concerned with
creating and managing model versions (e.g., comparing, tracking, and
merging different versions). Maintaining the model repository is con-
cerned with keeping different versions of the models in an internal/ex-
ternal repository center. Managing the model dependency relationships is
concerned with relating different models to each other. Lastly, using the
modeling tools that allow for extending the language meta-models for

model manipulations (e.g., model transformation, model analysis, model
documentation) may sometimes be challenging for the language users.

As Figure 11 shows, participants’ top-concern is the model ver-
sioning. Managing the dependency relationships between different
models is also challenging for nearly half of the participants. On the
other hand, the model realisation is the least challenging issue for the
participants. Some participants indicated further challenges that are not
given in the question’s answer list. These include the challenges on (i)
using the distributed version control systems for models, (ii) merging
the parts from different model versions into a new model version, and
(iii) the lack of tool support for reviewing models.

5.12. Q19: List below the challenges that you face in ”Other Modeling
Categories” on which you would consider collaborations with software
modeling researchers

Some of the participants (24%) indicated some other challenges that
they face with on software modeling and are not included in the cate-
gorisation of France et al. These are to do with (i) the software product-
line engineering, (ii) automating the model migration, (iii) the multiple-
user modeling with interdisciplinary teams, (iv) maximising the usability

Fig. 8. The type(s) of challenges that the participants face in the category of ”Analysing Models”

Fig. 9. The type(s) of challenges that the participants face in the category of ”Supporting Separation of Design Concerns”

Fig. 10. The type(s) of challenges that the participants face in the category of ”Transforming Models”

M. Ozkaya and F. Erata Journal of Computer Languages 58 (2020) 100963

9



of the language and its toolset, (v) managing multi-level of precisions to
enable multiple users from different backgrounds to work on the same
model, (vi) reusing models via the use of model templates, (vii) auto-
mating the modeling process, (viii) tool support for creating OMG meta-
models and working with them, (ix) achieving simplicity in modeling and
meta-modeling, (x) model execution and debugging, (xi) languages’ tool
complexity that require huge effort to learn and use, (xii) hybrid modeling
with textual and visual notation sets together, and (xiii) a standard for
exchanging models between different tools and technologies.

6. Discussions

6.1. Lessons Learned

While practitioners in industry face with several challenges on
software modeling, the existing survey studies in the literature are not
so helpful in terms of understanding the software modeling challenges
without focusing on any particular domains in a way that considers
various possible challenges in general. So, our survey discussed in this
paper focuses on France et al.’s extensive study on the software mod-
eling challenges and let us learn many lessons about practitioners’ ex-
perience with those challenges identified by France et al. Firstly, we
learned that the separation of design concerns is the least challenging
aspect of software modeling for the practitioners, while analysing
models is the top challenging issue. We also learned some crucial les-
sons about each category of software modeling challenges. Practitioners
indicated some concrete challenges on the complexity of the languages.
Indeed, while modelers are concerned about the languages’ steep
learning curve, meta-modelers are concerned about modifying the de-
finitions of the languages (i.e., syntax and semantics). While the ex-
tensible languages are supposed to be highly useful for adapting do-
main-specific concepts and tools, modelers have been observed to face
with challenges on introducing a new language semantics without
causing any conflicts with existing language semantics and updating the
language tools accordingly. Concerning the domain-specific modeling
environments, modelers’ main concern is to do with the DSLs’ tool
support for integrating new plug-in tools that can perform the required
tasks by the modelers. The formal modeling languages that enable the
precise and formally analysable models have also been found to be
challenging due to their steep learning curve. While some formal lan-
guages are supported with the exhaustive model checkers (or theorem
provers) for proving the model correctness, modelers are unfamiliar to
such analysis tools that accept formal models. Another lesson learned
here is that meta-modelers who develop DSLs find it challenging to
develop and test the translator tools that may translate the DSL models
in any formal languages to benefit the supporting model checkers of the
formal languages. While separating software models into different
viewpoints is highly important for the modular and understandable
model specifications, modelers expressed their concerns on the ability

of decomposing any software models into different viewpoints de-
pending on their domain requirements and analysing the relationships
between different viewpoint models to ensure their consistencies.
Concerning the modelers’ experience on model transformation, their
top challenges are on ensuring the consistency between the source and
target models and enabling the synchronisations between different
models. Lastly, we also learned that modelers find it challenging to
version their software models so as to perform such facilities as com-
paring, tracking, and merging different model versions.

Besides the lessons learned about the survey results, we also learned
some important lessons from the feedback received about the survey
questions that can be considered for any future surveys. Firstly, the
survey’s profiling questions aim to learn basically the participants’ work
countries and work industries. To maximise the anonymity of the par-
ticipants, we did not include any other profiling questions to learn, e.g.,
the participants’ role in modeling (modeler or meta-modeler), the
academic degrees and majors, the years of experiences on software
modeling, and the types of software projects involved. Indeed, given
our experiences from the previous surveys, many practitioners may not
wish to share specific information about their profiles. However, the
lack of the detailed profile information essentially prevented us from
determining any correlations between the participants’ profiles and the
software modeling challenges. Another lesson is to do with the ques-
tions that aim to learn the types of software modeling challenges in
each category considered in the survey. We provided a set of challenges
for each of those questions and expected the participants to choose
among those pre-defined list of challenges or state their own challenges
that are not included in the pre-defined list. However, we actually did
not provide any questions to learn the participants’ motivations behind
the challenges that they choose. Therefore, we were not able to learn
what make the participants face with those challenges or any software
modeling languages/techniques that cause the challenges.

6.2. Threats to Validity

6.2.1. Threats to Internal Validity
The internal validity is intended for ensuring that no any survey

results are affected by the unknown variables that unexpectedly affect
the survey results and cause biases. To avoid any threats against the
internal validity, we shared the survey among the potential participants
who are expected to have some experiences on software development
and preferably software modeling. Note that we are also interested in
the participants who are involved in software development but barely
describe software models due to some challenges. So, this minimised
the chance of receiving answers from the participants who are likely to
misunderstand the questions and provide biased answers due to the lack
of knowledge on software development and modeling.

Also, the unknown variables may be introduced due to the non-
random selection of the participants. While we did not have the chance

Fig. 11. The type(s) of challenges that the participants face in the category of ”Managing Models”

M. Ozkaya and F. Erata Journal of Computer Languages 58 (2020) 100963

10



of reaching every single practitioner randomly, we tried to mimic the
random selection via social platforms. Indeed, we sent messages to
several mailing lists that focus on software modeling & development
(e.g., eclipse mailing lists, AADL mailing list, Netbeans mailing list, the
mailing lists of netbeans, IEEE architecture description mailing list),
shared the survey link in many the linkedin groups on software mod-
eling & development and our twitter accounts, and sent posts to the
popular software development forums. So, the participants who use the
social platforms that we interacted have each got an equal chance of
accessing the survey randomly.

To strengthen the internal validity of the survey results, we selected
the participants from diverse profiles represented with the country of
work and work industry. By doing so, any biases due to being restricted
with a particular set of profiles are avoided. Indeed, the survey includes
participants from 18 different countries and several different work in-
dustries including automative, consumer electronics, energy, finance,
IT, retail, government, and healthcare. Note however that we did not
include any other profiling questions in our survey for learning, e.g., the
participants’ age, academic degrees & subjects, project types, and job
positions. This is essentially because we aimed to maximise the sim-
plicity of the survey and attract more participants. Indeed, our past
experiences on the survey design and execution and the feedback re-
ceived via the pilot study show that many participants do not wish to
give any personalised information or at least lose time answering pro-
filing questions. However, omitting such kinds of profiling questions
unfortunately prevented us from discussing the internal validity of the
survey results in a more precise way, as it is not currently easy for us to
determine the factors that may affect the participants’ answers and
establish some worthwhile correlations.

Lastly, to avoid any experimenter biases, the collected data of the
survey has been analysed by each author of the paper separately. The
authors compared their analysis for each survey question, and, if any
discrepancies detected, the authors conducted a discussion session to
reach a consensus.

6.2.2. Threats to External Validity
The external validity is intended for ensuring that the survey results

can be generalised to the entire population. To maximise the external
validity, we did our best to reach as many different profiles of the po-
pulation as possible. So, we succeeded to reach 80 different participants
from 18 different countries who work in 18 different industries.

6.2.3. Threats to Construct Validity
The construct validity is for ensuring that the survey results are sa-

tisfactory in terms of answering the research questions of the survey. To
maximise the construct validity of the survey results, we determined the
set of survey questions that are associated with each research question as
shown in Table 1. We further divided the survey questions into sections
with regard to the categories of modeling challenges considered in this
study. To avoid any biases here, we firstly asked in each section the level
of challenges that the participants face with, which is essentially for sa-
tisfying the first research question. If the participants have no challenges
in that category, we directed the participants to the next section without
answering the questions of the current section. Otherwise, the partici-
pants are prompt to state their concrete challenges in that category,
which is intended for the second research question. The answers of the
participants for each survey question have been analysed statistically via
the MS Excel office application.

The construct validity can be threatened when the constructs (i.e.,
the software modeling challenges) are measured with a single exemplar
only, which is known as the mono-operation bias. To avoid the mono-
operation bias, we intended to spread the survey among many plat-
forms that are internationally recognised and accessed by the partici-
pants from diverse countries and industries. So, we reached 80 parti-
cipants from 18 different countries and 18 different work industries.

Another potential threat results from the mono-method bias, which

is concerned with using a single method to measure the construct. In
this survey, we focused on France et al.’s 8 categories of software
modeling challenges to understand the modeling challenges that prac-
titioners face with. While France et al.’s study is well-regarded by the
software engineering community and highly cited in thousands of pa-
pers, one may consider France et al.’s research quite old that was
conducted 13 years ago and may therefore miss some newly emerging
categories of modeling challenges which the industry face with. To
reduce the bias here, we allowed the participants to type any other
categories of challenges that the participants face with in industry via
the last question of the survey.

7. Conclusion

In this paper, a survey has been conducted among 80 different par-
ticipants from 18 different countries with the goal of understanding the
challenges that practitioners face with on software modeling. The survey
focuses on eight different categories of software modeling challenges and
aims to determine which categories are more challenging for practi-
tioners and the concrete challenges faced with in each category. The
challenge categories considered are (i) managing the language com-
plexity, (ii) extending modeling languages, (iii) domain-specific mod-
eling environments, (iv) developing formal modeling languages, (v)
analysing models, (vi) separation of concerns, (vii) transforming models,
and (viii) managing models. As the survey results indicate, practitioners
face with many concrete challenges in each category that reveal several
interesting issues from modelers’ and meta-modelers’ point of views that
have remained unclear so far. Separation of concerns has been observed
to be the least challenging category of software modeling for the prac-
titioners, while analysing models has been observed to be practitioners’
top challenge. Some of the concrete challenges for different categories
are listed as follows: (ix) languages’ notational complexities that are
difficult to learn and use, (x) changing the definition of an existing
language for new requirements, (xi) extending the language semantics
without inconsistencies and updating the language tools in accordance
with the new semantics, (xii) evolving the DSL tools with the domain-
specific requirements and integrating multiple languages together, (xiii)
developing and testing the translators that translate the DSL models into
formal models in any formal verification language for formal analysis,
(xiv) using the model checker and theorem prover tools to perform
formal analysis on the formal models, (xv) decomposing models into
different viewpoint models that each deal with a particular concern and
ensuring the consistencies between different viewpoint models, (xvi)
ensuring the correct and consistent transformation between the source
and target models, and (xvii) managing different versions of the models
(e.g., comparing, tracking, and merging versions).

The results of this survey are expected to be highly useful for the
language developers to understand the most challenging issues about
software modeling and develop their languages (or evolve the existing
languages) in a way that bridges those gaps determined. Moreover, the
tool vendors may use the survey results to improve their modeling tools
for better addressing the needs of practitioners. The survey results are
also expected to trigger similar researches on other fields of software
engineering, such as mobile software development, and embedded
software development. Lastly, the results will be extremely useful for
the academia, who may wish to conduct researches on the relevant
topics with the software modeling challenges determined in our study
and collaborate with practitioners to propose innovative approaches
that address those challenges.

In the near future, we plan to validate the survey results via some
case-studies. To this end, we will consider the XIVT5 and PANORAMA6

projects, which are labeled by the European Union’s EUREKA Cluster

5 XIVT web-site: https://itea3.org/project/xivt.html
6 PANORAMA web-site: https://itea3.org/project/panorama.html

M. Ozkaya and F. Erata Journal of Computer Languages 58 (2020) 100963

11

https://itea3.org/project/xivt.html
https://itea3.org/project/panorama.html


programme ITEA (Information Technology for European Advance-
ment). We will design and execute case-studies for different industries
in which the projects’ industrial partners work, such as Arcelik for
consumer electronics, Turkcell for telecommunications, and AVL for
automotive. Each case-study will focus on a real problem that can be
solved with a software development in one of the industries considered.
The case-studies will be designed by following the well-accepted prin-
ciples (e.g., [33]) and prompt the practitioners to experience each ca-
tegory of software modeling addressed in the survey so as to observe the
concrete challenges that the industry faces with. Each case-study is to
be conducted over a pre-determined group of practitioners who work in
the corresponding company, and we will collect the data with our ob-
servations and a survey that is to be conducted on those practitioners
after they perform the case-study.

Disclosure of conflicts of interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

References

[1] E. Seidewitz, What models mean, IEEE Software 20 (5) (2003) 26–32, https://doi.
org/10.1109/MS.2003.1231147.

[2] B. Selic, The pragmatics of model-driven development, IEEE Softw. 20 (5) (2003)
19–25, https://doi.org/10.1109/MS.2003.1231146.

[3] C. Atkinson, T. Kühne, Model-driven development: A metamodeling foundation,
IEEE Softw. 20 (5) (2003) 36–41, https://doi.org/10.1109/MS.2003.1231149.

[4] J. Rumbaugh, I. Jacobson, G. Booch, Unified Modeling Language Reference Manual,
The (2Nd Edition), Pearson Higher Education, 2004.

[5] M. Ozkaya, Analysing uml-based software modelling languages, Journal of
Aeronautics and Space Technologies 11 (2) (2018) 119–134. http://www.rast.org.
tr/JAST/index.php/JAST/article/view/326

[6] M. Ozkaya, The analysis of architectural languages for the needs of practitioners,
Softw., Pract. Exper. 48 (5) (2018) 985–1018, https://doi.org/10.1002/spe.2561.

[7] M. Ozkaya, Do the informal & formal software modeling notations satisfy practi-
tioners for software architecture modeling? Information & Software Technology 95
(2018) 15–33, https://doi.org/10.1016/j.infsof.2017.10.008.

[8] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, A. Tang, What industry needs from
architectural languages: A survey, IEEE Transactions on Software Engineering 99
(2012), https://doi.org/10.1109/TSE.2012.74.

[9] D. Akdur, V. Garousi, O. Demirörs, A survey on modeling and model-driven en-
gineering practices in the embedded software industry, Journal of Systems
Architecture - Embedded Systems Design 91 (2018) 62–82, https://doi.org/10.
1016/j.sysarc.2018.09.007.

[10] R. France, B. Rumpe, Model-driven development of complex software: A research
roadmap, 2007 Future of Software Engineering, FOSE ’07, IEEE Computer Society,
Washington, DC, USA, 2007, pp. 37–54, https://doi.org/10.1109/FOSE.2007.14.

[11] M. Ozkaya, What is software architecture to practitioners: A survey, in:
S. Hammoudi, L.F. Pires, B. Selic, P. Desfray (Eds.), MODELSWARD 2016 -
Proceedings of the 4rd International Conference on Model-Driven Engineering and
Software Development, Rome, Italy, 19-21 February, 2016. SciTePress, 2016, pp.
677–686, , https://doi.org/10.5220/0005826006770686.

[12] R. Popping, Analyzing open-ended questions by means of text analysis procedures,
Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique 128
(1) (2015) 23–39, https://doi.org/10.1177/0759106315597389.

[13] A. Forward, T.C. Lethbridge, Perceptions of Software Modeling: A Survey of
Software Practitioners, Technical Report, School of Information Technology and
Engineering, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5, 2008.

[14] G. Liebel, N. Marko, M. Tichy, A. Leitner, J. Hansson, Model-based engineering in
the embedded systems domain: an industrial survey on the state-of-practice,

Software & Systems Modeling 17 (1) (2018) 91–113, https://doi.org/10.1007/
s10270-016-0523-3.

[15] P. Mohagheghi, V. Dehlen, Where is the proof? - a review of experiences from
applying MDE in industry, in: I. Schieferdecker, A. Hartman (Eds.), Model Driven
Architecture – Foundations and Applications, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008, pp. 432–443.

[16] T. Berger, R. Rublack, D. Nair, J.M. Atlee, M. Becker, K. Czarnecki, A. Wasowski, A
survey of variability modeling in industrial practice, Proceedings of the Seventh
International Workshop on Variability Modelling of Software-intensive Systems,
VaMoS ’13, ACM, New York, NY, USA, 2013, pp. 7:1–7:8, https://doi.org/10.1145/
2430502.2430513.

[17] C.F.J. Lange, M.R.V. Chaudron, J. Muskens, In practice: UML software architecture
and design description, IEEE Software 23 (2) (2006) 40–46, https://doi.org/10.
1109/MS.2006.50.

[18] P. Kruchten, The 4+1 view model of architecture, IEEE Software 12 (6) (1995)
42–50, https://doi.org/10.1109/52.469759.

[19] F. Tomassetti, M. Torchiano, A. Tiso, F. Ricca, G. Reggio, Maturity of software
modelling and model driven engineering: A survey in the italian industry, 16th
International Conference on Evaluation Assessment in Software Engineering (EASE
2012), (2012), pp. 91–100, https://doi.org/10.1049/ic.2012.0012.

[20] A. Wortmann, O. Barais, B. Combemale, M. Wimmer, Modeling Languages in
Industry 4.0: An Extended Systematic Mapping Study, Software and Systems
Modeling (2019) 1–28, https://doi.org/10.1007/s10270-019-00757-6.

[21] T. Kosar, S. Bohra, M. Mernik, Domain-specific languages: A systematic mapping
study, Information & Software Technology 71 (2016) 77–91, https://doi.org/10.
1016/j.infsof.2015.11.001.

[22] G. Czech, M. Moser, J. Pichler, Best practices for domain-specific modeling. a sys-
tematic mapping study, 2018 44th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), (2018), pp. 137–145, https://doi.org/10.1109/
SEAA.2018.00031.

[23] D. Méndez-Acuña, J.A. Galindo Duarte, T. Degueule, B. Combemale, B. Baudry,
Leveraging Software Product Lines Engineering in the Development of External
DSLs: A Systematic Literature Review, Computer Languages, Systems and Structures
(2016), https://doi.org/10.1016/j.cl.2016.09.004.

[24] B. Lelandais, M.-P. Oudot, B. Combemale, Applying model-driven engineering to
high-performance computing: Experience report, lessons learned, and remaining
challenges, Journal of Computer Languages 55 (2019) 100919, https://doi.org/10.
1016/j.cola.2019.100919.

[25] H. Störrle, How are conceptual models used in industrial software development?: A
descriptive survey, Proceedings of the 21st International Conference on Evaluation
and Assessment in Software Engineering, EASE’17, ACM, New York, NY, USA, 2017,
pp. 160–169, https://doi.org/10.1145/3084226.3084256.

[26] J. Whittle, J.E. Hutchinson, M. Rouncefield, H. Burden, R. Heldal, A taxonomy of
tool-related issues affecting the adoption of model-driven engineering, Software
and Systems Modeling 16 (2) (2017) 313–331, https://doi.org/10.1007/s10270-
015-0487-8.

[27] D. Ameller, X. Franch, C. Gmez, S. Martnez-Fernndez, J. Araujo, S. Biffl, J. Cabot,
V. Cortellessa, D. Mndez, A. Moreira, H. Muccini, A. Vallecillo, M. Wimmer,
V. Amaral, W. Bhm, H. Bruneliere, L. Burgueo, M. Goulo, S. Teufl, L. Berardinelli,
Dealing with non-functional requirements in model-driven development: A survey,
IEEE Transactions on Software Engineering (2019), https://doi.org/10.1109/TSE.
2019.2904476. 1–1

[28] P.H. Feiler, B.A. Lewis, S. Vestal, The SAE architecture analysis & design language
(AADL): A standard for engineering performance critical systems, IEEE Intl Symp.
on Intell. Control, (2006), pp. 1206–1211, https://doi.org/10.1109/CACSD.2006.
285483. //aadl.info

[29] E.M. Clarke, J.M. Wing, Formal methods: State of the art and future directions, ACM
Comput. Surv. 28 (4) (1996) 626–643, https://doi.org/10.1145/242223.242257.

[30] G.J. Holzmann, The SPIN Model Checker - primer and reference manual, Addison-
Wesley, 2004.

[31] S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott, G.C. Patton,
B.M. Horowitz, Model-based testing in practice, Proceedings of the 1999
International Conference on Software Engineering (IEEE Cat. No.99CB37002),
(1999), pp. 285–294, https://doi.org/10.1145/302405.302640.

[32] R. Filman, T. Elrad, S. Clarke, M. Akşit, Aspect-oriented Software Development,
first, Addison-Wesley Professional, 2004.

[33] P. Runeson, M. Höst, Guidelines for conducting and reporting case study research in
software engineering, Empirical Software Engineering 14 (2) (2009) 131–164,
https://doi.org/10.1007/s10664-008-9102-8.

M. Ozkaya and F. Erata Journal of Computer Languages 58 (2020) 100963

12

https://doi.org/10.1109/MS.2003.1231147
https://doi.org/10.1109/MS.2003.1231147
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/MS.2003.1231149
http://refhub.elsevier.com/S2590-1184(20)30023-X/sbref0004
http://refhub.elsevier.com/S2590-1184(20)30023-X/sbref0004
http://refhub.elsevier.com/S2590-1184(20)30023-X/sbref0005
http://refhub.elsevier.com/S2590-1184(20)30023-X/sbref0005
http://www.rast.org.tr/JAST/index.php/JAST/article/view/326
https://doi.org/10.1002/spe.2561
https://doi.org/10.1016/j.infsof.2017.10.008
https://doi.org/10.1109/TSE.2012.74
https://doi.org/10.1016/j.sysarc.2018.09.007
https://doi.org/10.1016/j.sysarc.2018.09.007
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.5220/0005826006770686
https://doi.org/10.1177/0759106315597389
http://refhub.elsevier.com/S2590-1184(20)30023-X/sbref0013
http://refhub.elsevier.com/S2590-1184(20)30023-X/sbref0013
http://refhub.elsevier.com/S2590-1184(20)30023-X/sbref0013
https://doi.org/10.1007/s10270-016-0523-3
https://doi.org/10.1007/s10270-016-0523-3
http://refhub.elsevier.com/S2590-1184(20)30023-X/sbref0015
http://refhub.elsevier.com/S2590-1184(20)30023-X/sbref0015
http://refhub.elsevier.com/S2590-1184(20)30023-X/sbref0015
http://refhub.elsevier.com/S2590-1184(20)30023-X/sbref0015
https://doi.org/10.1145/2430502.2430513
https://doi.org/10.1145/2430502.2430513
https://doi.org/10.1109/MS.2006.50
https://doi.org/10.1109/MS.2006.50
https://doi.org/10.1109/52.469759
https://doi.org/10.1049/ic.2012.0012
https://doi.org/10.1007/s10270-019-00757-6
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.1109/SEAA.2018.00031
https://doi.org/10.1109/SEAA.2018.00031
https://doi.org/10.1016/j.cl.2016.09.004
https://doi.org/10.1016/j.cola.2019.100919
https://doi.org/10.1016/j.cola.2019.100919
https://doi.org/10.1145/3084226.3084256
https://doi.org/10.1007/s10270-015-0487-8
https://doi.org/10.1007/s10270-015-0487-8
https://doi.org/10.1109/TSE.2019.2904476
https://doi.org/10.1109/TSE.2019.2904476
https://doi.org/10.1109/CACSD.2006.285483
https://doi.org/10.1109/CACSD.2006.285483
https://doi.org/10.1145/242223.242257
http://refhub.elsevier.com/S2590-1184(20)30023-X/sbref0030
http://refhub.elsevier.com/S2590-1184(20)30023-X/sbref0030
https://doi.org/10.1145/302405.302640
http://refhub.elsevier.com/S2590-1184(20)30023-X/sbref0032
http://refhub.elsevier.com/S2590-1184(20)30023-X/sbref0032
https://doi.org/10.1007/s10664-008-9102-8

	Understanding Practitioners’ Challenges on Software Modeling: A Survey
	Introduction
	Motivation and Goal

	Research Questions
	Survey Design, Execution, and Sampling
	Survey Design
	Survey Execution
	Survey Sampling

	Related Work
	Survey Findings and Results
	Q1: Participants’ Country of Work
	Q2: Participants’ Work Industries
	Q3, Q5, Q7, Q9, Q11, Q13, Q15, Q17: The level of challenges that the participants face with for each category of modeling challenges
	Q4: The type(s) of challenges that practitioners face in the category of ”Managing Language Complexity”
	Q6: The type(s) of challenges that practitioners face in the category of ”Extending Modeling Languages”
	Q8: The type(s) of challenges that practitioners face in the category of ”Domain-specific Modeling Environments”
	Q10: The type(s) of challenges that practitioners face in the category of ”Developing Formal Modeling Languages”
	Q12: The type(s) of challenges that practitioners face in the category of ”Analysing Models”
	Q14: The type(s) of challenges that practitioners face in the category of ”Supporting Separation of Design Concerns”
	Q16: The type(s) of challenges that practitioners face in the category of ”Transforming Models”
	Q18: The type(s) of challenges that practitioners face in the category of ”Managing Models”
	Q19: List below the challenges that you face in ”Other Modeling Categories” on which you would consider collaborations with software modeling researchers

	Discussions
	Lessons Learned
	Threats to Validity
	Threats to Internal Validity
	Threats to External Validity
	Threats to Construct Validity


	Conclusion
	Disclosure of conflicts of interest
	References




