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Abstract

Recent advances in reasoning models have led to impressive performance in several areas of
reason: first-order logic, mathematics, and computer programming to name a few. Yet these
models do not scale to combinatorial reasoning tasks. These tasks require the model to find a
solution out of a combinatorially large search space while reasoning correctly at each step of the
search. Existing techniques for such problems are neuro-symbolic: they translate the problem into a
formal representation and use symbolic solvers to conquer the combinatorial search space. These
approaches are often limited to rigid reasoning tasks that have exact formal translations and even
then, translation incurs an error overhead, leading to lower performance.
We propose CDCL-IC, a Chain-of-Thought (CoT) reasoning technique that conquers combinatorial
search problems through Conflict-Driven Clause Learning (CDCL). Our technique uses CDCL to
learn bad patterns during backtracking CoT reasoning and blocks it using in-context learning to
prune the search space. We implement CDCL-IC for Sudoku, and show that our approach greatly
outperforms both traditional CoT and o3-mini on 9x9 Sudoku problems. 1

1 Introduction

Reasoning models are the driving force behind recent advances in AI [1–5]. These models, which
break down problems into steps and solve them incrementally enable natural-language reasoning on
topics such as mathematics, computer programming, and logic [6–9]. These models perform filtering
and search over these reasoning steps, allowing it to search through multiple chains of thoughts until
a suitable candidate is reached.

While reasoning models perform well on standard deductive reasoning tasks that require multiple
steps of correct reasoning, combinatorial reasoning problems such as Boolean Satisfiability (SAT) [10]
and Integer Linear Programming (ILP) [11] present another challenge beyond step-wise accuracy. In
these problems, a series of locally valid steps can lead to a state where the problems are unsolvable.
Therefore, these problems require backtracking search to solve. Existing techniques for handling
combinatorial reasoning are neuro-symbolic. To avoid searching in natural language CoT, these
techniques use language models to convert the problem into a formal representation such as executable
programs [12–14] or logic solver constraints. This translation comes at a cost. The problem domain
needs to neatly map to existing search paradigms like SAT or ILP, and the translator accuracy seldom
rises above 85% in recent works [15].

Conquering combinatorial reasoning is a classic task in symbolic AI [16, 17, 10]. Symbolic AI
solvers for combinatorial reasoning problems such as SAT and ILP employ online learning techniques
to prune the search space. We focus on CDCL, a technique used in SAT solvers. CDCL works
by incrementally solving a problem with locally correct steps. If these steps make the problem
unsolvable (conflict), the solver performs an analysis of the steps to identify a pattern of steps that
lead to a conflict. This pattern is learned so that the solver can prune a search if this pattern occurs.
We take inspiration from CDCL in SAT solvers and implement it in the scope of in-context learning.
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Our reasoning technique starts off by incrementally solving the problem in steps. The step-generating
model labels each step as one of two labels: free choices and deduced steps. A reward model checks
each step as valid. While solving combinatorial problems, it is possible to make all valid local steps
but end up in an unsolvable state. Once the problem becomes unsolvable, we perform an analysis
of the free choices and deduced to learn a pattern of unsolvable choices. This learned pattern is
appended to the context of the reward model which is fine-tuned to take these patterns as instructions
of which partial boards to prune. With the bad pattern pruning large number of boards, the solver
approaches the solution more efficiently.

The rest of the paper proceeds as follows. First, we discuss the background in both neural and symbolic
AI on which our approach stands. Then, we provide a description of our technique, followed by an
evaluation, and discussion on the applicability of our approach to broader combinatorial reasoning
tasks. Our contribution is as follows

• CDCL-IC: a technique to scale CoT reasoning to combinatorial search problems.

• An implementation of CDCL-IC for Sudoku, an NP-Complete combinatorial reasoning
problem.

• A preliminary evaluation of CDCL-IC against o3-mini and an ablation analysis of CDCL-IC
demonstrating the effectiveness of the approach at pruning the search space.

2 Background

Implication Graphs. In discrete combinatorial reasoning, we can divide moves into 2 disjoint
categories. First of these are choices like filling a Sudoku cell with 5 when filling it with 2 or 1 would
have been equally good. Second are deductions, which are forced. For example, if the row of a
Sudoku cell contains every number but 9, then the only option for that cell is 9.

Once every move is categorized into choices and deductions, we can construct an implication
graph [16]. Implication graphs are directed graphs such that each edge is one constraint that forms
part of the deduction and nodes are assignments like filling a cell. All choices have no incoming
edges because they are chosen, not deduced. Every deduction will have incoming edges from other
nodes that forced that choice. For example, if 9 is the only number to fill a Sudoku cell because all
other numbers are used on its row, then the there will be an directed edge from every other assignment
on the row to node representing the cell being filled with 9.

Learning Clauses with First Unique Implication Point The instrumental value of implication
graphs is in deriving clauses. These clauses are patterns that every solution must obey. Simply
blocking the immediate pattern does not prune the search space by much because it would be very
specific to that particular set of choices. This is especially true of for combinatorial problems like
SAT or Sudoku where most of the choices happen at the early steps and the rest of the steps are
deductions that are forced by the early choices. In these cases, we need to traverse up the implication
graph until choices are reached. This ensures that we block as general patterns as possible. The first
point of encountering choices is called the first unique implication point [16, 18].

In-Context Learning The performance of language models can be improved by giving examples in
the context window [19]. In-context learning enables changes to model behavior on the fly without
training or fine-tuning. We use this feature of language models to adjust the behavior and enforce the
patterns found by clause learning.

3 Technique

We present CDCL-IC, the technique for scaling reasoning models to combinatorial problems.

3.1 Overview of the Algorithm

The overview of CDCL-IC is given in Figure 1. Since CDCL-IC augments reasoning models, the
inputs and outputs are the same. The input is a combinatorial reasoning problem specified in natural
language. Given the prompt, we construct a tree of natural-language steps while ranking them with a
reward model. The reward model ensures that each step is locally valid. The tree is expanded until
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the solution is found. The difference between traditional reasoning models and CDCL-IC is how it
deals with failures. Once a failure is encountered, CDCL-IC analyzes the reasoning steps taken to
reach that point to construct an implication graph. From this implication graph, we derive a pattern
that leads to failure. CDCL-IC allows the reward model prune the search space further by learning
this negative pattern in-context and reflecting it on the reward of the steps.

3.2 Stepwise Search for a Solution

CDCL-IC is compatible with models that reason step-by-step. The base model is executed to a chain
of steps that solve the problem. We continue to execute until it gets stuck with the choices made.
At that point, an implication graph is constructed to determine the pattern of choices that led to the
model getting stuck.

Constructing the implication graph requires that the steps be labeled to trace the dependencies between
them. Choices made from more than one available option should be labeled as such. Deductions,
where previous choices or the configuration of the problem force only one option also labeled, with
directed edges indicating past choices and inputs that forced this result. We demonstrate this with an
example from 9x9 Sudoku.

Choices. Consider the model filling a particular cell whose row contains {1, 2}, column {3, 4} and
square contains {5, 6}. The set of possible numbers for this cell are {7, 8, 9}. Picking once from the
set of {7, 8, 9} is a choice. Note that, despite being constrained by other cells, we consider this a free
choice. This contrasts with SAT, where boolean variables can only take two value, and thus every
restriction on the value will force the other value.

Deductions. Now instead, suppose that the row contains {1, 2, 7, 8}. The only option left for the cell
is 9. When only one option is available, we label this as a deduction. For deductions we keep the list
of other choices and variables that constrained the choice. For example, we would keep the row cells
{1, 2, 7, 8}, column cells {3, 4} and square cells {5, 6} as constraining the value to 9.

Conflicts/Stuck. Sometimes, there are no options. Consider the board from “Deductions” but with
the column containing {3, 4, 9}. In this case, no value can fill the cell because the only option, 9, is
no longer available. We detect this when every choice results in an step rejected by the reward model.
At this point, we construct the implication graph and resolve the pattern of bad choices that yielded
this state. This step is done using the classic technique from SAT, which we elide for brevity.
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3.3 In-Context Tunable Reward Model

Now that a new pattern of steps found, we need to allow the reward model to take it into account
when computing the reward for the steps. While it would be possible to add one particular bad pattern
to the training data of the reward model, the number of bad patters is also exponential and thus it is
not possible to cover meaningful set of them by re-training. Instead, we propose to make the reward
model tunable to the bad patterns by putting them in the context and asking the reward model to
detect that bad pattern. This turns the problem of learning an exponential set of bad patterns into a
detection problem given a single bad pattern.

3.4 Adjusting the Reward

Now that we learned a new pattern of bad steps, we need to incorporate it into a way of rewarding the
reasoning steps. Using the In-context tunable reward model, we output n+ 1 scores between 0 and 1.
The first score r0 is estimates the probability that this move obeys the rules of the problem. The next
n estimate the probability that the board doesn’t contain the i-th bad pattern where i ∈ {1, ldots, n}.
We discount the initial naive reward r0 with the blocked patterns. Finally, since only one bad pattern
needs to match, we take the minimum reward min(r0 ∗ rb1 , . . . , r0 ∗ rbn) where b1, . . . , bn are the
learned patterns.

4 Evaluation

We present an evaluation of CDCL-IC on the following research questions (RQs) using the NP-
Complete problem Sudoku [? ].

RQ1: How does CDCL-IC compare against state-of-the-art (SOTA) reasoning models in solving
NP-Complete combinatorial search problems?

RQ2: How does the clause-learning feature of CDCL-IC contribute to the performance?

RQ3: How does the failure modes of CDCL-IC compare with that of SOTA reasoning models?

4.1 Benchmark

We select Sudoku as our benchmark because it satisfies three requirements. First, it is an NP-complete
discrete search problem without numerical computation steps. This is important because we do not
want to confound our results with issues of mathematical or arithmetic reasoning, which would be
required for problems like Integer Linear Programming [16]. Second, Sudoku, especially 9x9, has
plenty of training data available for LLMs. In contrast, other NP-Complete problems like Boolean
Satisfiability [10] are unlikely to be found in LLM training datasets. Third, Sudoku has canonical
display format of n-by-n grids. This avoids the issue of LLM performance being negatively effected
by the our choice of formatting the problem into strings.

We randomly generate 25 Sudoku problems. These randomly generated instances may have any
number of solutions, including none. These problems are solved using a custom DFS solver to
generate the baseline data.

4.2 Setup and Implementation

CDCL-IC: Our instantiation of CDCL-IC for Sudoku consists of two parts. First, there is a generator
that produces one step given the previous board state. Repeatedly querying this will produce a chain
of board states. Second, a reward model is trained to detect improper steps in filling the Sudoku
board, such as putting the same number in the same row or producing a board with a blocked pattern.
This model is trained to detect board patterns from the context, allowing it to block learned bad board
patterns. Qwen 2.5 0.5B [20] is fine-tuned for this purpose.

o3-mini: We use o3-mini-2025-01-31 as our SOTA baseline. This model allows us to select
the “reasoning level” used during inference. A preliminary investigation using 4x4 models showed
increased error hallucination with the “high” setting. Therefore, we use “medium” for the evaluation.
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Figure 2: We compare CDCL-IC and o3-mini on their ability to solve 4x4 and 9x9 Sudoku boards.
Our evaluation shows that, while both solve 4x4 Sudoku boards easily, o3-mini fails to solve 9x9
Sudoku boards. Instead, partial solutions and timeouts occur.

Table 1: We compare CDCL-IC and search without CDCL-IC for 4x4 and 9x9 Sudoku boards. We
measure the number of boards solved out of 25 and the median number of backtracks per board.

4x4 Solved 4x4 Median No. Backtracks 9x9 Solved 9x9 Median No. Backtracks

Without CDCL-IC 25 3.2 0 >210
With CDCL-IC 25 3.2 23 77

4.3 RQ1: CDCL-IC v.s. SOTA Reasoners

We present an evaluation of CDCL-IC against o3-mini. Fig. 2 shows the success rates of CDCL-IC
and o3-mini on 4x4 and 9x9 Sudoku boards. CDCL-IC was run on 25 benchmarks, and o3-mini
on 50 benchmarks due to cost reasons. The green bar indicates the percentage of Sudoku problems
solved. Red, grey, and purple indicate non-solutions, timeouts, and incorrect solutions respectively.
Each of these failure modes will be analyzed further in RQ3

For 4x4 Sudoku boards, both CDCL-IC and o3-mini solve them with accuracy above J%. Rates of
errors are low for 4x4 boards. 9x9 boards presents a challenge to both tools. CDCL-IC’s accuracy
lowers to 70% while o3-mini solves almost no boards. The respective error categories increase with
timeouts accounting for most of CDCL-IC’s failures while o3-mini refuses to answer most of the
problems it fails at.

4.4 RQ2: Scaling Search with Clause Learning

We compare CDCL-IC with and without clause learning. The results are provided in Table 1. The
first row is the data for 4x4 boards while the second is for 9x9 boards. Each column is a statistic,
with the left half of columns being the ablation variant without clause learning and the right half
being CDCL-IC. For both 4x4 and 9x9, CDCL-IC performs strictly better than the ablation variant.
In 4x4, both CDCL-IC and search without CDCL-IC are identical. In 9x9, none of the boards get
solved without CDCL-IC while search with CDCL-IC solves 23 problems out of 25 while reducing
backtracking by a factor of at least 3 times per problem. Combined, we show clause learning helps
scale search for larger problems.
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4.5 RQ3: Failure Analysis

We present a qualitative analysis of the errors encountered by SOTA reasoning models and CDCL-IC
over the evaluation. We manually inspect a set of 50 benchmarks and answers for o3-mini and
CDCL-IC.

Non-Answers For o3-mini, the model often fails to answer with a valid Sudoku board. There are
roughly 2 modes to this failure. First, o3-mini will answer that “9x9 Sudoku is a difficult problem,”
and goes on to explain its search complexity. Second, o3-mini partially solves the Sudoku board
with about a quarter of cells left open with “?” in the place of a number. o3-mini claims that “?” has
a satisfying solution even when it does not.

We note that “non-answer” errors account for most of the increase in errors between 4x4 and 9x9
Sudoku. As the board size increases, o3-mini resorts to giving partial answers and explanations
of why it failed to solve rather than actual answers. If we assume that o3-mini has uses a reward
model, we consider these answers are the result of reward-hacking.

Timeouts For both CDCL-IC and o3-mini, we encountered timeouts. For CDCL-IC, we set a
manual timeout of 100 backtracking operations, which it exceeds on 2 out of 25 problems. For
o3-mini, 20 problems caused the API to return a 503 error, which we consider to be a timeout.

Error Hallucination per Step We note that CDCL-IC has a higher failure rate for 9x9 boards. We
note that these are due to compounding error probabilities when running at longer steps. For each
step, the test-time accuracy of the reward model is above 98%. While the reward model’s errors are
evenly distributed with respect to how much the board has been filled, compounding these across
nearly 80 steps cause all but 15% of solutions to have stepwise errors. This does not automatically
imply that the accuracy is, or should be, 15%; if a reward model negatively decides a valid path in a
problem that turns out to be unsatisfiable, accuracy will not be effected.

o3-mini is proprietary and we have no insight into the nature of its failures as we have no access to its
full chain-of-thought. However, our issues with “high effort” settings on 4x4 boards suggests similar
factors are at play. As the chain length increases, hallucination in the reward model compounds.
We note that these problems are fundamental to any reward model that needs to operate over large
number of steps.

5 Discussion: General Applicability

We take this section to discuss the general applicability of out approach. While learning from failure
is a general framework that guides search-based approaches for NP-Complete problems, we note
three restrictions for CDCL-IC to apply: the reasoning steps need to be discrete, the steps need be
categorized into “choices” and “deductions”, and every “deduction” needs to keep track of which
previous “choices” and “deductions” which forced this step. We go over the requirements in detail.

The discrete step requirement is general to any incrementally backgracking reasoning model. If
the steps were not discrete, it would be difficult to backtrack to the “last correct” step. For logical,
programming, and mathematical problems, the output, and thus the steps are generally discrete.

Our system requires that the steps fall into exactly one of two categories: “choices” and “deductions.”
For example, the generator can fill a particular cell with the number “5” under exactly two circum-
stances. First, it can choose to do so when there are other options, or “5” is the only number not used
in the row. In the former case, the tool chose “5” out of multiple options. In the latter, the choice
of “5” is deduced. This distinction matters because when a particular path of cell assignments fail,
we do not want to block its nearest causes, but instead, the broadest set causes, or 1UIP cut in SAT
literature [10]. CDCL-IC traverses the set of “deductions” until a broader set is reached.

Third requirement for every “deduction” having a set of causes arises out of this need to traverse the
implications back to root causes. This Implication Graph [10] enables us to the most general cause of
the failure. These graphs of reasoning are an extended version of “previous steps” labels in existing
reasoning models [21].
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6 Conclusion

We presented CDCL-IC, a technique for scaling CoT reasoning to combinatorial problems. CDCL-
IC allows reasoning models to prune their search space while facing combinatorial explosions.
We demonstrate its effectiveness for 9x9 Sudoku problems, enabling performance beyond SOTA
reasoning models.
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