
Modeling Traceability in System of Systems

Bedir Tekinerdogan
Information Technology Group

Wageningen University
Wageningen, The Netherlands

bedir.tekinerdogan@wur.nl

Ferhat Erata
Information Technology Group

Wageningen University
Wageningen, The Netherlands

ferhat.erata@wur.nl

ABSTRACT
An important aspect in SoS is the realization of the con-
cerns in different systems that work together. Identifying
and locating these concerns is important to orchestrate the
overall activities and hereby to achieve the overall goal of
the SoS. Moreover, concerns in SoS are rarely stable and
need to evolve in different ways and different times in ac-
cordance with the changing requirements. To manage the
SoS and cope with the evolution of concerns it is neces-
sary that the dependency links between the concerns and
the system elements can be easily traced. In this paper, we
present the different traceability requirements and the cor-
responding metamodel to support modeling traceability and
supporting traceability analysis approaches within the SoS
context.

Keywords
System of Systems, Traceability, Metamodel

CCS Concepts
•Software and its engineering → Traceability; Soft-
ware evolution;

1. INTRODUCTION
Whereas traditionally systems were addressing a single do-
main current systems have to be composed of multiple sys-
tems that need to be integrated in a coherent way. In addi-
tion, the configuration is not static but requires also the dy-
namic adaptation. To be able to design, analyze, implement
and maintain such large so-called systems of systems (SoS), a
Systems of Systems Engineering (SoSE) approach is required
Traditionally, SoSE methodology is heavily used in the de-
fense domain but is now also increasingly being applied to
non-defense related problems such as architectural design of
problems in air and auto transportation, healthcare, global

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SAC 2017,April 03-07, 2017, Marrakech, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. . . $15.00

http://dx.doi.org/10.1145/3019612.3019908

communication networks, search and rescue, space explo-
ration and many other SoS application domains [5]

SoSE is more than systems engineering of monolithic, com-
plex systems because design for SoS problems is performed
under some level of uncertainty in the requirements and
the constituent systems, and it involves considerations in
multiple levels and domains. Whereas systems engineer-
ing addresses the development and operations of monolithic
products, SoSE addresses the development and operations
of evolving systems. In other words, traditional systems en-
gineering seeks to optimize an individual system (i.e., the
product), while SoSE seeks to optimize network of various
interacting legacy and new systems brought together to sat-
isfy multiple objectives of the program. SoSE should enable
the decision-makers to understand the implications of var-
ious choices on technical performance, costs, extensibility
and flexibility over time; thus, effective SoSE methodology
should prepare decision-makers to design informed architec-
tural solutions for SoS problems.

An important aspect in SoS is the realization of the capa-
bilities in different systems that work together. Tracking
these capabilities is important to orchestrate the overall ac-
tivities and hereby to achieve the overall goal of the SoS. In
addition to the complexity of the SoS we have also to cope
with the evolution of the system which could be at different
times and places in the SoS. Capabilities in SoS can evolve
in accordance with the changing requirements and as such
can change or need to be reallocated to other systems in the
SoS.

To manage the complexity and the evolution of SoS it is
necessary that the dependency links between the capabil-
ities and the system elements can be easily traced. This
is because changes to capabilities as such can have conse-
quences for the overall SoS performance or for other system
elements, which are directly or indirectly related to it.

Obviously, to address the above problem we need to be able
to track and trace the implemented capabilities. This is not
only important in the initial construction or integration of
the SoS, but also in later phases in which the systems can
evolve independently.

The notion of traceability is not new and much research has
been carried out in different domains including requirements
engineering, model-driven development, and aspect-oriented
software development [9, 1]. However, traceability of con-
cerns in SoS has not yet been tackled in depth. In this

1799

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3019612.3019908&domain=pdf&date_stamp=2017-04-03

paper, we aim to address this problem by providing a list
of requirements for addressing traceability in SoS. Based on
these requirements we propose a metamodel for traceability
in SoS that can be used to support systematic traceability
analysis approaches.

The remainder of the paper is organized as follows. Sec-
tion 2 illustrates the need for Traceability along with a case
study. In section 3, we present the requirements for trace-
ability within the context of SoS. In section 4, we present
the traceability metamodel for SoS. In section 6, we present
the related work and finally in section 7 we conclude the
paper.

2. SMART CITY ENGINEERING
To illustrate the need for traceability in SoS we will adopt
the case study for smart city engineering [13]. It is expected
that the gross of the world population will live in urban cities
in the near future. This will have a huge impact on future
personal lives and mobility. A smart city uses information
and communication technology (ICT) to enhance the qual-
ity and performance of urban services, to reduce costs and
resource consumption, and to engage more effectively and
actively with its citizens. Sectors that have been developing
smart city technology include government services, trans-
port and traffic management, water and waste, health care,
and energy. Smart city systems typically can be considered
as a SoS since it consists of multiple systems that are inte-
grated to achieve a given goal. Smart city applications are
developed with the goal to improve the management of ur-
ban flows and allowing for real time responses to challenges.
To illustrate the problem of traceability within and across
systems within SoS we define a set of change scenarios:

Reduce Waste and Pollution. Waste and pollution pre-
vention and reduction is an important aspect of a city to
enhance the well-being of the city habitants. In general mul-
tiple system units will need to have the capability for moni-
toring and controlling the waste and pollution in a city. To
optimize this process it is important that each system unit
is traced for this capability.

Enhance security. Security is usually an important con-
cern in a city. For enhancing the overall security in a city
it is important that we have a clear picture on the system
units that have an impact on supporting security, that is,
that require the security capability.

Optimize Help in Emergency. A city can cope with dif-
ferent emergency states that require a coordinated action
of the system units. To support the effective and efficient
communication and emergency handling the different capa-
bilities related to this need to be well-defined and allocated
over the different system units.

The above scenarios are selected examples that could be
required in a SoS and we could easily identify several other
scenarios that impact the SoS and that require traceability
of the capabilities. In general, we encounter the following
two problems in realizing such kind of changes.

Identification of the capabilities. First of all, each change
of a capability requires the identification of the systems that
implement the capabilities. For example, for realizing the

scenario enhance security we need to identify all the system
elements that are related to security. For the scenario reduce
pollution we need to identify the system elements that are
related to pollution. In some cases we could derive from the
names of the architectural elements which concerns are im-
plemented, however, like in this case this is usually not that
straightforward. Moreover, each concern might also map to
more than one architectural element.

Orchestration of Capabilities. Identifying the distribu-
tion and allocation of capabilities to system elements is not
sufficient in case we also need to optimize the systemic prop-
erties. For this reason, the state of the capability in each
system needs to be communicated and orchestrated with
the state of the capabilities of other system elements. Only
then we could manage the systemic properties. In the other
case local optimization at the single system level could be
achieved but the global systemic level optimization would
be largely ignored.

3. REQUIREMENTS FOR TRACEABILITY
Based on the work on the literature on traceability and SoS
we provide a set of requirements for traceability of the ca-
pabilities.

Explicit Modeling of Concerns. In order to explicitly
reason about traceability of the capabilities it is necessary
that the corresponding capabilities are explicitly modeled as
first class abstractions. The detail of concern model could
range from just a description of its name to a full semantic
model including attributes such as stakeholder, the domain
of the capability, the date at it was raised, the impact that
it has, etc.

Explicit Modeling of Dependency Relations. Assum-
ing that capabilities are related to system units, it is nec-
essary to make these relations explicit. This can be only
done when dependency relations are recorded as traceabil-
ity links. For this, traceability should be specified as first
class abstractions in the adopted traceability model.

Support for Automated Tracing Queries. The explicit
models for capabilities and the traceability help to define the
links between the different concerns and the system units.
In case traceability links among capabilities, the tracing can
only be done in an implicit manner. By providing the trace-
ability links, capabilities can be more easily traced by just
following the tracing links. Nevertheless, for a complex sys-
tem following the traceability links manually might not be
trivial. Even though the traceability links are made explicit
it may be hard to expose the required traceability links. To
support the tracing the system should provide automated
support for defining generic and user-defined queries to iden-
tify and trace the capabilities.

Support for Traceability within and across System
Boundaries. An SoS typically consists of multiple inte-
grated systems or system units. Tracing should be sup-
ported within and across life system units. Obviously, capa-
bilities will be allocated and realized in various systems of
the SoS. To understand the relations among the capabilities
and system units, it is necessary to model traceability for
the given system unit. Figure 1 shows the abstract model

1800

for tracing within a system. We define her two types of
traceability: (1) intra capability to system unit traceability
(2) intra system unit to capability traceability.

Capability

System Unit

System x

intra
capability to

artifact
traceability

Intra system
unit to

capability
traceability

Figure 1: Traceability within a single System

Figure 2 and Figure 3 presents the abstract model for trace-
ability relationships across system units. In Figure 2 two
types of relations are defined that we think are necessary.
Inter capability to capability traceability defines the trace-
ability of a capability in one system to another capability
of another system. Inter system unit traceability defines the
traceability of a system unit in one system to another system
unit in another system.

Capability

System Unit

System x

inter
capability to
capability

traceability Capability

System Unit

System y

inter
system unit to
system unit
traceability

Figure 2: Traceability across Systems in SoS

Figure 3 adopts the traceability between systems, but here
the relations are defined from a capability to a system unit
and vice versa. It should be noted that, the relations from
Figure 3 can be also derived from the traceability relations
of Figure 1 and Figure 2. The traceability relations of Figure
3 can be practical to optimize the tracing.

Capability

System Unit

System x

Capability

System Unit

System y

inter system unit
to capability
traceability

inter capability
to system unit

traceability

Figure 3: Traceability across Systems in SoS

4. METAMODEL FOR TRACEABILITY
In the following we present the traceability metamodel for
tracing capabilities in SoS as depicted in Figure 4. The
metamodel represents SoS & capability modeling and trac-
ing modeling. The metamodel should be preferably read
from the bottom to the upper part.

Trace-links

SoS and Capabilities

Capability

TraceableElement Trace

TraceModel

ExtensionalTrace

1..*

1..*

source

1..* 0..*

target
0..*

IntensionalTrace
-sourceQuery
-targetQuery

SystemUnit
-reference
-name

CapabilityGroup SystemModel

1..*1..*

Figure 4: Traceability Metamodel for SoS

5. APPROACH
In the previous sections, we have described the properties of
SoS, the different types of SoS, the different traceability re-
quirements and the metamodel. Based on these we can build
the traceability approaches. A traceability approach can in
essence include two different activities including traceability
modeling and traceability analysis approach.

In the traceability modeling process the focus will be on
defining the trace links between the elements that need to
be traced. In the previous section, we have discussed the
need for tracing capabilities within and across system units
in SoS.

Traceability analysis aims to trace a capability or system
unit for different purposes. This could be for example, for
checking the consistency or for analyzing the impact of a
change of a system unit or capability in the SoS. For imple-
menting a traceability modeling and analysis approach we
need to consider the different types of SoS types. The differ-
ent traceability requirements will be similar for all types of
SoS. The difficulty for traceability approach will be however
different for the different SoS types.

In the directed SoS defining trace links and such supporting
traceability analysis seems to be the most feasible. This is
because in directed SoS we have an upfront directed engi-
neering effort for integrating a set of systems. Hereby when
designing the system traceability could be considered as an
explicit concern thereby realizing the trace links beforehand,
and if possible also prepare the trace queries.

1801

6. RELATED WORK
The topic of traceability is not new and has been discussed
in various domains. The IEEE provides the following defini-
tion of traceability [2]: ”Traceability is the degree to which
a relationship can be established between two or more prod-
ucts of the development process, especially products having
a predecessor-successor or master-subordinate relationship
one another; for example, the degree to which the require-
ments and design of a given software component match.”
In requirements engineering lots of work has been done on
tracing requirements from the stakeholders and in the design
process [6, 7].

In the model-driven engineering approach [1, 3] traceabil-
ity is considered important for tracing model elements [12].
The problem of traceability has also been addressed by the
AOSD community [4, 8] encompassing the adoption of as-
pects throughout the lifecycle.

In our earlier work we have focused on modeling traceability
within architecture views [8, 9, 10] and for different lifecyle
activities [11]. In this paper we have neither focused on
system views nor on the lifecycle activities. Both dimensions
would imply an elaboration of the traceability requirements,
the metamodel and also the approach. We consider this as
part of our future work.

In a SoS the capabilities will be typically distributed and
allocated over different system units. Some capabilities will
have a more systemic character cannot be localized in one
system unit and be scattered over different system units.
We could state that some capabilities will have a crosscut-
ting property [4, 8]. Aspect-Oriented Software Development
provides solution for the crosscutting problem and could as
such be used to solve the problem of crosscutting capability
problems.

7. CONCLUSION
Traceability is an important quality factor that has been
addressed in various domains to improve other quality fac-
tors such as understandability, maintenance and adaptabil-
ity. In this paper, we have built on the general literature
on traceability and explored traceability within the context
of system of systems (SoS). We have provided a metamodel
for traceability, the key requirements for traceability in SoS,
and the approaches for traceability analysis. We have used
the classification of SoSs in the literature including directed
SoS, acknowledged SoS, Collaborative SoS, and Virtual SoS.
We have seen that modeling traceability in directed SoS will
be the easiest thanks to a strong central management and
the possibility to design the system for traceability earlier
on. Virtual SoS does not have a central management, no
agreed purpose and the systems in the SoS are largely in-
dependent. This makes it difficult to integrate traceability
analysis in such systems. Our future work will elaborate
on providing design abstractions for traceability in SoS and
adopting the presented ideas in a real SoS.

8. ACKNOWLEDGMENTS
The authors would like to acknowledge networking support
by European Cooperation in Science and Technology (COST)

Action IC1404 ”Multi-ParadigmModelling for Cyber-Physical
Systems”.

9. REFERENCES
[1] L. Bondé, P. Boulet, and J.-L. Dekeyser. Traceability

and interoperability at different levels of abstraction in
model transformations. In forum on specification and
design languages, FDL, volume 5, 2005.

[2] P. Bourque, R. E. Fairley, et al. Guide to the Software
Engineering Body of Knowledge: Version 3.0. IEEE
Computer Society Press, 3rd edition, 2014.

[3] J. Champeau and E. Rochefort. Model engineering
and traceability. In Workshop SIVOES-MDA,
UML’03, 2003.

[4] R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M. P.
Alarcon, J. Bakker, B. Tekinerdogan, S. Clarke, and
A. Jackson. Survey of analysis and design approaches.
Network of Excellence AOSD-Europe, 2005.

[5] J. S. Dahmann and K. J. Baldwin. Understanding the
current state of us defense systems of systems and the
implications for systems engineering. In Systems
Conference, 2008 2nd Annual IEEE, pages 1–7. IEEE,
2008.

[6] O. C. Gotel and C. Finkelstein. An analysis of the
requirements traceability problem. In First
International Conference on Requirements
Engineering (ICRE’94), pages 94–101, April 1994.

[7] B. Ramesh and M. Jarke. Toward reference models for
requirements traceability. IEEE Transactions on
Software Engineering, 27(1):58–93, January 2001.

[8] B. Tekinerdogan. ASAAM: Aspectual software
architecture analysis method. In 4th Working
IEEE/IFIP Conference on Software Architecture
(WICSA), pages 5–14. IEEE, 2004.

[9] B. Tekinerdogan, C. Hofmann, and M. Aksit.
Modeling traceability of concerns for synchronizing
architectural views. Journal of Object Technology,
6(7):7–25, 2007.

[10] B. Tekinerdogan, C. Hofmann, and M. Aksit.
Modeling traceability of concerns in architectural
views. In International Workshop on Aspect-oriented
modeling, volume 209, pages 49–56. ACM, 2007.

[11] B. Tekinerdogan, C. Hofmann, M. Aksit, and
J. Bakker. Metamodel for tracing concerns across the
life cycle. In Early Aspects: Current Challenges and
Future Directions, pages 175–194, Vancouver, Canada,
March 2007. Springer.

[12] K. Van Den Berg, B. Tekinerdogan, and H. Nguyen.
Analysis of crosscutting in model transformations. In
European Conference on Model-Driven Architecture,
Traceability Workshop, pages 51–64, July 2006.

[13] Y. Yoshikawa, A. Sato, S. Hirasawa, M. Takahashi,
and M. Yamamoto. Hitachi’s vision of the smart city.
Hitachi Review, 61:111–118, 2012.

1802

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'IEEE_Xplorer'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20170118110126
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 4
 0
 1

 1

 HistoryList_V1
 qi2base

