
Science of Computer Programming 191 (2020) 102416
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Automated reasoning framework for traceability management 

of system of systems

Bedir Tekinerdogan a,∗, Ferhat Erata b,c

a Information Technology, Wageningen University, the Netherlands
b Department of Computer Science, Yale University, CT, USA
c UNIT Information Technologies, Research & Development, Turkey

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 March 2019
Received in revised form 25 January 2020
Accepted 28 January 2020
Available online 3 February 2020

Keywords:
System of systems
Traceability
Metamodeling
Domain specific language

An important aspect in system of systems (SoS) is the realization of the capabilities 
in different systems that work together. Identifying and locating these capabilities are 
important to orchestrate the overall activities and hereby to achieve the overall goal of 
the SoS. System elements and capabilities in SoS however, are rarely stable and need to 
evolve in different ways and different times in accordance with the changing requirements. 
To manage the SoS and cope with its evolution it is necessary that the dependency links 
to the capabilities and the system elements can be easily traced. Several approaches have 
been proposed to model traceability and reason about these by extending a predetermined 
set of possible trace links with fixed semantics. However, for the context of SoS a fixed 
traceability model with fixed traceability semantics is limited to consider the various 
different and changing scenarios. In this article, we first present the different traceability 
requirements for managing traceability in the context of SoS. Subsequently, we present 
the metamodel and the corresponding domain specific language to support modeling 
traceability and traceability analysis approaches within the evolving SoS context. Further, 
we provide the tool support for automated reasoning of traceability of SoS capabilities and 
system elements. We illustrate and discuss the approach for the application to a smart city 
SoS.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Whereas traditionally systems were addressing a single domain, current systems have to be composed of multiple sys-
tems that need to be integrated in a coherent way. To be able to design, analyze, implement and maintain such large 
so-called systems of systems (SoS) [1], a Systems of Systems Engineering (SoSE) approach is required [2], [1]. Traditionally, 
SoSE has been heavily used in the defense domain but is now also increasingly being applied to non-defense related prob-
lems such as air and auto transportation, healthcare, global communication networks, search and rescue systems, space 
exploration and many other SoS application domains.

One of the key challenges of SoS besides its complexity is the continuous need for evolution whereby new system 
elements and capabilities are deployed, and unnecessary system elements and capabilities will be given up. The evolution of 
SoSs is inherently continuous, whereby adaptations will be made continuously to meet the changing requirements. Evolution 
is often not local but systemic in that it impacts multiple system elements and capabilities together.

* Corresponding author.
E-mail address: bedir.tekinerdogan@wur.nl (B. Tekinerdogan).
https://doi.org/10.1016/j.scico.2020.102416
0167-6423/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2020.102416
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:bedir.tekinerdogan@wur.nl
https://doi.org/10.1016/j.scico.2020.102416
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2020.102416&domain=pdf


2 B. Tekinerdogan, F. Erata / Science of Computer Programming 191 (2020) 102416
To manage this size of complexity and the evolution of SoS, it is necessary that the corresponding dependency links 
can be easily traced. This is because changes to capabilities or system elements as such can have consequences for the 
overall SoS performance. Due to the dynamic behavior of SoS, traceability management within the context of SoS is not 
only important in the initial construction or integration of the SoS, but also in later phases in which the systems can evolve 
independently.

The notion of traceability is not new and much research has been carried out in different domains including requirements 
engineering, model-driven development, and aspect-oriented software development [3], [4]. In general, a traceability model 
defines the types of the trace relations, such as depends-on, refines, satisfies, etc. [5], [6], [7]. For ensuring traceability very 
often a fixed traceability model is employed by the existing tools, that define a predetermined set of possible trace relations 
and their corresponding semantics. For single homogeneous systems with a predetermined semantics that does not need 
to change, adopting a single static traceability model is usually not a serious problem. However, in the case of dealing 
with complex heterogeneous systems as in the case of SoSs, these approaches will be limited. In the context of SoS, it is 
therefore required to enable the adoption of different traceability models with their own specific semantics, and herewith 
the corresponding different traceability analysis approaches. This need for a richer and dynamically configurable traceability 
semantics further requires a platform in which system elements as well as capabilities are modeled as first class abstractions, 
and the traceability model can be easily adapted to support a customized traceability analysis.

In this article, we aim to address this problem of heterogeneous dynamic traceability semantics by first providing a list 
of requirements for addressing traceability in SoS. Based on these requirements we propose a metamodel for traceability 
in SoS that is mapped to a domain specific language, which can be further used to support systematic traceability analysis 
approaches. We present the key different traceability analysis scenarios including consistency checking of constructed SoS 
models, extraction and depiction of trace links, and the impact analysis of a change in the SoS elements or capabilities. The 
overall approach is applied to the smart city engineering case study.

The remainder of the paper is organized as follows. In section 2, we briefly describe the background on SoS engineering. 
In section 3 we present the case study on smart city engineering that we will use to illustrate the problem statement and 
the adopted approach. In section 4, we present the requirements for traceability within the context of SoS. In section 5 we 
present the traceability metamodel for SoS together with the tracelink semantics and the traceability analysis. Section 6
presents the domain specific language based on the traceability metamodel and the defined semantics. Section 7 presents 
the tool of the presented approach. In section 8 we present the related work and finally in section 9 we conclude the paper.

2. System of systems and capability engineering

Systems can be grouped together to create SoS. There are many kinds of systems, including natural systems, social 
systems, and technological systems. Systems that are created by and for people are referred to as Engineered Systems [2].

In an SoS, the individual system components have managerial and operational independence, whereas the overall purpose 
of the system is to provide a function or service that cannot be provided by the individual systems independently. In general, 
systems in SoSs are being employed in various combinations to provide different capabilities (Fig. 1). Different types of 
SoS can be distinguished based on different properties which we have extensively discussed in our earlier work [2], [8]. 
A recurring classification is based on central management of the systems, a common agreed purpose and the independent 
ownership of the systems based on which four key categories of SoSs are distinguished:

Directed SoS are built and managed to fulfill specific purposes. The SoS is centrally managed to fulfill the agreed purpose. 
The component systems can operate independently, but their normal operational mode is subordinated to the centrally 

Fig. 1. Types of system of systems [2].



B. Tekinerdogan, F. Erata / Science of Computer Programming 191 (2020) 102416 3
Table 1
Possible evolution scenarios in SoS; system element is a component, 
sub-system, system, or SoS.

Nr. Description of the change scenario

S1 System element is added to the SoS
S2 System element is removed from the SoS
S3 System element is updated in the SoS
S4 A capability is added to a system element in the SoS
S5 A capability is removed from a system element in the SoS
S6 A capability from a system element is updated in the SoS

managed purpose. Acknowledged SoS have also a recognized objective and central management. In contrast to Directed SoS 
the constituent systems retain their independent ownership. Changes in the systems are based on collaboration between the 
SoS and the system. Collaborative SoSs have a commonly agreed purpose but do not have a central management. The com-
ponent systems interact voluntarily to fulfill agreed-upon central purposes. Virtual SoSs lack a central management authority 
and a centrally agreed-upon purpose. Further, the component systems have their independent ownership. It should be noted 
that the classification of SoS based on governance and management criteria. We refer to [8] in which a multi-dimensional 
classification of SoS is provided.

Related to SoS is the term capability that is widely used across many SoS application domains, and which has actually 
taken on various specific meanings across, and even within, those domains. Terms such as capability-based acquisition, 
capability engineering and management, life capability management, capability sponsor, etc. are now ubiquitous in multiple 
application domains.

Henshaw et al. [9] indicate that different communities use the terms with similar, but distinctly different meanings, 
and have identified eight perspectives of capability. They define capability as the ability to do something and capability 
engineering as the overarching approach that links value, purpose, and solution of a systems problem. Often, at the highest 
granularity level, capability is usually defined as the emergent property of SoS. In our context we will adopt the broader 
definition of property or service of each system element, whether it is the result of emergence or not.

An SoS is rarely stable and needs to evolve continuously. The need for evolution might be due to the changing context 
and the changing requirements. In general, in an SoS either the system elements or the capabilities can change. System 
elements can be at different granularity including component, sub-system, system, or even an SoS. Based on this, Table 1
shows the possible evolution scenarios in SoS. Given the three different types of granularity of system elements that we 
distinguished the table thus captures 6 × 4 = 24 different change scenarios.

3. Case study: smart city engineering

To illustrate the need for traceability in SoS we will adopt the case study for smart city engineering [10], [11], [12], [13]. 
It is expected that the gross of the world population will live in urban cities in the near future. This will have a huge impact 
on future personal lives and mobility. A smart city uses information and communication technology (ICT) to enhance the 
quality and performance of urban services, to reduce costs and resource consumption, and to engage more effectively and 
actively with its citizens. Sectors that have been developing smart city technology include government services, transport 
and traffic management, water and waste, health care, and energy. Smart city systems typically can be considered as an 
SoS since it consists of multiple systems that are integrated to achieve a given goal. Smart city applications are developed 
with the goal to improve the management of urban flows and allowing for real-time responses to challenges. Based on the 
common aspects of smart cities as described in the literature [14] we have derived the decomposition view of a smart city 
as shown in Fig. 2. Each rectangle in the figure shows a particular smart system that is integrated into the overall smart 
city SoS. Table 2 shows the capabilities of a selected set of smart systems in the overall SoS. Note that the elements listed 
in Table 2 are all capabilities and need to be read as such. Some constituent systems might have similar names (e.g. Smart 
Traffic). The capability could be realized with such a system but in any case despite possible similar names conceptually the 
elements are different (system has capability).

Fig. 2 shows the static structural perspective of the smart SoS. However, like in any SoS also in smart city SoS the 
different system elements are interdependent and collaborate to realize their own capabilities and to create capabilities that 
emerge out of the collaboration. Fig. 3 thus shows a partial view of the smart city SoS including the system elements and 
the various behavioral dependency relations among the system elements. The rectangles represent the constituents systems 
while the arrows represent the dependency links.

The smart SoS is a typical example of an SoS that constantly evolves. To manage the SoS it is important to identify, model 
and trace these changes. We can identify a number of example scenarios that show the need for traceability management:

• S1-Add system to the smart grid of the city
The smart grid of a smart city is responsible for the smart electricity supply network that uses digital communications 
links to regulate and optimize energy usage in the city. Adding a new system to the overall smart city SoS can require 
updating the procedures for allocation, regulation, and optimization procedures for the smart metering and distribution 



4 B. Tekinerdogan, F. Erata / Science of Computer Programming 191 (2020) 102416
Fig. 2. Modules of smart city.

Table 2
Example capabilities of selected system elements in smart city case.

System element Capability

Smart Transport Smart Notification
Smart Traffic
Collision Avoidance
Variable Speed

Smart Energy Smart metering
Smart provisioning
Smart distribution
Smart energy storage

Smart Logistics Smart Inventory Management
Warehouse Management
Security
Smart Packaging
Transportation
Material Handling
Vehicle to Vehicle Communication

Smart Traffic Smart Parking
Smart Lighting
Smart Monitoring
Car to Car Communication

Smart Farming Smart Livestock farming
Variable Rate Fertilization
Smart Climate Monitoring
Greenhouse automation
Crop Management

of energy. Based on Fig. 3 we can also derive that changes to Smart Grid will impact Smart Energy which on its turn will 
impact the other system elements.

• S2-Monitor waste and pollution
Waste and pollution prevention and reduction is an important aspect of a city to enhance the well-being of the citizens. 
In general, multiple system units will need to have the capability for monitoring and controlling the waste and pollution 
in a city. To optimize this process, it is important that each system element is traced for this capability. In case of 
changes to the system elements or the capabilities, this should be explicitly notified. For the given models of smart 
city this means that capabilities for monitoring of waste and pollution prevention and reduction must be added to the 
corresponding system elements.

• S3-Enhance security
Security is usually an important capability in a city that actually is related to and has an impact to multiple different 
system elements as well as other capabilities. For enhancing the overall security in a city it is important that we 
have a clear picture on the system elements that have an impact on supporting security, that is, which require the 
security capability. Changes to the system elements and/or the capabilities might lead to security threats and weaken 



B. Tekinerdogan, F. Erata / Science of Computer Programming 191 (2020) 102416 5
Fig. 3. Partial view of smart city with trace links among system elements.

the system. Hence, traceability is here not only needed in the initial design and analysis of the SoS, but also required in 
the evolution of the SoS. We will elaborate on this scenario in section 7.

• S4-Optimize help in emergency
A city can cope with different emergency states that require a coordinated action of the system units. To support 
the effective and efficient communication and emergency handling the different capabilities related to this need to be 
well-defined and allocated over the different system units. Here, traceability is needed to detect the anticipated and 
unanticipated incidents, broadcast and communicate the incident, and realize the required support for resolving the 
emergency.

The above scenarios are only selected examples that could be required in an SoS, and we could easily identify several other 
scenarios that impact the SoS and that require traceability management. In general, traceability in SoS requires the identi-
fication of the system elements and capabilities for a given set of queries. For example, for realizing the scenario “enhance 
security” we need to identify all the system elements that are related to security. For the scenario “reduce pollution” we 
need to identify the system elements that are related to pollution. In some cases we could derive from the names of the 
system elements which capabilities are implemented, however, very often this is usually not that straightforward and man-
ual traceability management is limited. Moreover, each capability might also map to more than one system element. As 
stated before, these scenarios and the need for traceability analysis is inherent in SoSs due to their very dynamic character. 
SoSs are constantly evolving in which system elements are added, removed, updated, with different capabilities that are im-
plemented or emerged after a composition of the system elements. An explicit traceability management approach dedicated 
for SoS is needed to support the understanding and maintenance of the evolving SoSs.

4. Requirements for SoS traceability

Based on the literature on traceability and SoS we provide a set of requirements for traceability in SoS in the following 
sub-sections.

4.1. Explicit modeling of SoS structure and the capabilities

In order to explicitly reason about traceability it is necessary that the corresponding capabilities, and the system ele-
ments are explicitly modeled as first class abstractions. The detail of this required capability model could range from just a 
description of its name to a full semantic model including attributes such as stakeholder, the domain of the capability, the 
date at it was raised, the impact that it has, etc.



6 B. Tekinerdogan, F. Erata / Science of Computer Programming 191 (2020) 102416
Fig. 4. Traceability relationships within a single system.

4.2. Explicit modeling of dependency relations in the SoS

Within an SoS, system elements might be related to other system elements, and address capabilities. To support trace-
ability, it is necessary to make these relations explicit. This can be only done when dependency relations are recorded as 
traceability links. For this, traceability links should be specified as first class abstractions in the adopted traceability model.

4.3. Support for automated tracing queries

The explicit models for capabilities and the traceability help to define the links between the different capabilities and the 
system elements. For a large-scale SoS manually tracing the changes is not tractable for the human engineer. To support the 
tracing, the system should provide automated support for defining generic and user-defined queries to identify and trace 
the capabilities. Traceability analysis can be carried out for different purposes including consistency analysis and impact 
analysis.

4.4. Dynamic adaptation of traceability semantics

To support traceability, different types of traceability models have been used with their own tools [3], [15], [16]. A 
traceability model defines the types of trace relations, such as depends-on, refines, satisfies, etc. [7]. For ensuring traceability, 
very often a fixed traceability model is employed by the existing tools, that define a predetermined set of possible trace 
relations and their corresponding semantics. For homogeneous single systems with a predetermined semantics that do 
not need to change, adopting a single static traceability model is usually not a serious problem. However, in the case 
of dealing with complex heterogeneous SoS, instead of a one-size-fits-all approach, it is required to enable the adoption 
of different traceability models with their own specific semantics, and herewith the corresponding different traceability 
analysis approaches. On its turn, this requires a platform in which the traceability model can be easily adapted to support a 
customized traceability analysis.

4.5. Support for traceability within and across system boundaries

An SoS typically consists of multiple integrated systems or system elements. As stated before, system elements can be at 
different granularity levels including component, sub-system, system, or SoS. Tracing should be supported within and across 
system boundaries. Obviously, capabilities will be allocated and realized in various systems of the SoS. To understand the 
relations among the capabilities and system elements, it is necessary to model traceability for the given system element. 
Fig. 4 shows the abstract model for tracing within a system. We define here two types of traceability: (1) intra capability to 
system element traceability (2) intra system element to capability traceability. In the first case we are interested in tracing 
the system elements that are related to a given capability. In the second case we are interested in tracing the capabilities 
that are related to a given system element.

Fig. 5 and Fig. 6 presents the conceptual model for traceability relationships across systems in an SoS. In Fig. 5 two 
types of relations are defined that we think are necessary. Inter capability to capability traceability defines the traceability of 
a capability in one system to another capability of another system. Inter system element traceability defines the traceability of 
a system element in one system to another system element in another system.



B. Tekinerdogan, F. Erata / Science of Computer Programming 191 (2020) 102416 7
Fig. 5. Traceability relationships across systems in SoS - capability to capability.

Fig. 6. Traceability relationships across systems in SoS - capability to system elements.

Fig. 6 adopts the traceability between systems, but here the relations are defined from a capability to a system element 
and vice versa. It should be noted that the relations from Fig. 6 can also be derived from the traceability relations of 4 and 
5. The traceability relations of Fig. 6 can be practical to optimize the tracing.

5. Metamodel for traceability in SoS

In this section we will provide the traceability metamodel, the required traceability semantics and the traceability anal-
ysis.

5.1. Traceability metamodel

Fig. 7 shows the traceability metamodel that we will adopt to support the traceability management of SoSs. The meta-
model represents and integrates both the structural modeling of SoS using system elements and capabilities, and the 
required tracing modeling. The left part of the metamodel represents the traceable elements, which are capability or system 
element. System elements can be recursively decomposed. At the highest level resides the SoS, which can include two or 
more systems. A system on its turn can include sub-systems or components. Sub-systems can have further sub-systems or 
components. The right part of the metamodel represents the trace link elements. A tracelink has one or more source and 
target elements. A trace link has a particular scope, that is, either within a single system scope (IntraTraceLink) or across 
multiple system elements (InterTraceLink). A trace link further has different semantics which could be, for example, depend, 
require, satisfy, conform, generate, etc. We will elaborate on these in the following sub-section. Table 3 shows the possible 
set of trace link semantics that we have derived from [17]. In essence, we can identify the following types of traceability 
links:

• capability to system element
• capability to capability
• system element to system element



8 B. Tekinerdogan, F. Erata / Science of Computer Programming 191 (2020) 102416
Fig. 7. Traceability metamodel.

Table 3
Semantics of trace links.

Trace-link Trace-link semantics

S ystem Element → S ystem Element
Depends S1 depends on S2

Uses S1 uses S2

Collaborates with S1 collaborates with S2

Part of S1 is part of S2

Refines S1 refines S2

Manages S1 manages S2

Reports to S1 reports to S2

S ystem Element → Capability (→ S ystem Element)
Implements S1 implements C1

Requires S1 requires C1

Owns S1 owns C1

Shares with S1 shares C1 with S2

Capability → Capability
Refines C1 refines C2

Parts of C1 is part of C2

Composed of C1 is composed of C2 . . . Cn

Conflicts with C1 depends on C2

Precedes C1 should be realized before C2

Causally after C1 should be realized after C2

5.2. Traceability analysis

At the level of models (SoS for city engineering) we explicitly specify the semantics using Alloy specification language.
Once we have defined the metamodel and the traceability semantics we can now focus on possible traceability analysis 

approaches. Traceability analysis aims to trace a capability or system element for different purposes. This could be for 
example, for checking the consistency or for analyzing the impact of a change of a system element or capability in the SoS. 
The scope of the traceability can cover a single system scope or cross the boundaries of systems. We term the first type of 
traceability analysis intra-traceability analysis, while the second type is termed as inter-traceability analysis.

Table 4 shows a selected set of identified queries that are relevant for traceability analysis within a system in the context 
of SoSs. In the table, multiple different queries have been defined that aim to make explicit the trace links between the 



B. Tekinerdogan, F. Erata / Science of Computer Programming 191 (2020) 102416 9
Table 4
Traceability analysis queries within system boundary.

Traceability within system boundary

Q 1 What are the elements that implement capability C1 within system S1?
Q 2 What are the elements that refines capability C1 within system S1?
Q 3 What are the elements that are linked to element S1?
Q 4 What are the elements that do not implement a capability?
Q 5 What are the capabilities that are linked to C1?
Q 6 What is the trace-depth level of capability C1?
Q 7 What is the trace-depth level of system element S1?
Q 8 Does system element S1 implement capability C1?

Table 5
Traceability analysis queries across system boundaries.

Traceability across system boundaries

Q 9 What are the elements that implement capability C1 within system {S1, S2 . . . Sn}?
Q 10 What are the elements that do not implement a capability within system {S1, S2 . . . Sn}?
Q 11 What are the capabilities that are linked to C1 within system {S1, S2 . . . Sn}?
Q 12 What is the trace-depth level of capability C1 within system {S1, S2 . . . Sn}?
Q 13 What is the trace-depth level of system element S1 within system {S1, S2 . . . Sn}?
Q 14 Is capability C1 realized in the scope of {S1, S2 . . . Sn}?

Fig. 8. Grammar DSL for system-of-systems (based on metamodel).

trace elements, that is, system elements and capabilities. These queries on their turn can be used to support the high level 
traceability analysis goals. For example, for analyzing the impact of a change of a capability Q in a system we might need 
to use the queries that can select the system elements that are related to Q, and then further check these elements for the 
trace-depth.

Table 5 shows a selected set of identified queries that are relevant for traceability analysis across single system bound-
aries in the context of SoSs. The queries are partially similar to the queries of a single system boundaries but also consider 
a broader scope.



10 B. Tekinerdogan, F. Erata / Science of Computer Programming 191 (2020) 102416
Fig. 9. Grammar DSL for system-of-systems (based on metamodel).

6. Trace-SoS: DSL for the SoS traceability metamodel

In the previous section we have described the metamodel for traceability in SoS. To support the modeling of the SoS, and 
the traceability of the system elements and capabilities, we have developed a domain specific language (DSL) called Trace-
SoS based on the corresponding metamodel. A DSL is a tailor-made language for a specific problem domain [18], [19] that 
provides the abstractions of that domain. Several benefits can be provided for the development and use of DSLs including 
increasing the development productivity, supporting the communication among domain experts, supporting platform inde-
pendence, supporting code generation, and a more elaborate and precise validation. To develop the DSL we have applied 
the method as defined by Stembeck and Zdun [18]. For developing the DSL framework, we have used the Eclipse frame-
work including the Xtext Language Generator tools. Xtext Language Generator is used to generate textual domain specific 
language.

Our focus is on the domain of SoS and traceability which were combined in a single metamodel. The abstractions for 
the DSL consist thus of the concepts as defined in the metamodel. In principle, the DSL consists of three basic parts (1) 
SoS modeling (2) traceability modeling, and (3) trace semantics modeling. Fig. 8 shows the grammar of the part of the SoS 
traceability metamodel that is used for defining the structure of the SoS. Fig. 9 shows the part of the DSL that is related to 
the definition of the trace links. All the earlier defined trace link types have been implemented in the DSL and thus can be 
used to model an SoS with the different trace links. Fig. 10 shows an example DSL instance for the smart city system that 
was discussed before.

For the evaluation of the DSL we have looked at several theoretical studies in the literature that can be used to as-
sess novel DSLs. We applied the Framework for Qualitative Assessment of DSLs (FQAD) which has been recently published 
[20]. The framework is based on the ISO/IEC 25010:2011 standard and defines a set of quality characteristics for evalu-
ating a DSL including: Functional suitability, Usability, Reliability, Maintainability, Productivity, Extensibility, Compatibility, 
Expressiveness, Reusability, and Integrability.



B. Tekinerdogan, F. Erata / Science of Computer Programming 191 (2020) 102416 11
Fig. 10. DSL instance of the DSL for system-of-systems.

Functional suitability refers to the degree to which a DSL is fully developed and likewise includes all the necessary 
functionality. We have focused on two key issues including SoS modeling and traceability modeling. Both aspects have been 
thoroughly analyzed from the literature and the required functionality has been mapped to the metamodel and the DSL.

Usability of a DSL is the degree to which a DSL can be used by specified users to achieve specified goals. We can state 
that the DSL is relatively simple but expressive and can be relatively easily learned. We have also explicitly focused on 
addressing the different concerns which we believe is helpful.

Reliability of a DSL is defined as the property of a language that aids producing reliable programs. The provided DSL 
has been developed using the Eclipse environment. The language has an editor with the default editing features including 
auto-complete. The language is defined according to the well-defined principles and it has precise semantics. The Eclipse 
editor provides all the required instruments for debugging and handling code errors. Extensibility defines the degree to 
which a language has general mechanisms for users to add new features. For adding new features to the languages, the 
language developer toolset can be used and the language can be easily extended. This is of course also the benefit of the 
Eclipse and the related tools that we used as a language workbench.

Integrability defines how easily a DSL can be integrated with other languages and modeling tools. We have developed 
the language framework as a plug-in within the Eclipse framework. The Eclipse platform allows the developer to extend 
Eclipse applications like the Eclipse IDE with additional functionalities via plug-ins. Integration of the language with other 
languages can be done using the Eclipse IDE and the overall OSGI component model.

Maintainability defines the degree to which a language is easy to maintain. The DSL can be altered and new concepts and 
concept extensions can be added. The DSL has been carefully designed regarding the separation of concerns principle. This 
has led to a modular structure of the overall language framework as well as within the DSL. Productivity of a DSL refers to 
the degree to which a language promotes programming productivity. Productivity is a characteristic related to the amount 
of resources expended by the user to achieve specified goals. Productivity can be increased because of the adoption of high 
level domain-specific language concepts. Compatibility defines the degree to which a DSL is compatible to the domain and 
development process. The language framework that we have provided is agnostic to the development process.

Reusability is defined as the degree to which a language constructs can be used in more than one language. The specifi-
cations that are defined in the DSL can be reused in the overall environment.

Expressiveness is defined as the degree to which a problem solving strategy can be mapped into a program naturally. 
In other words, expressiveness is the relation between the program and what the programmer has in mind. Hereby it is 
important that there is a one-to-one correspondence between concepts and their representation in the language. Further 
the right abstraction level must be selected so as not to use too generic or too specific concepts. The DSL that has been 
developed is based on a thorough domain analysis whereby we have modeled each concept in the corresponding metamod-



12 B. Tekinerdogan, F. Erata / Science of Computer Programming 191 (2020) 102416
Fig. 11. Snapshot of the tool Trace-SoS.

els of the languages. We can state that there is indeed a one-to-one correspondence between the identified concepts and 
the representations in the language. The abstraction level of the elements has been carefully defined to be usable for the 
developer. The language elements are expressive enough to specify the problem, while too specific details are handled by 
traceability analysis programs.

7. Tool support and traceability management process

In this section we describe the tool Trace-SoS that adopts the DSL of the traceability SoS metamodel of Fig. 7. A snapshot 
of the tool is shown in Fig. 11. The left part of the tool shows the explorer and SoS view in which we the structure of the 
SoS can be modeled. The view on the right shows the trace view that depicts all the defined tracelinks. A corresponding 
Youtube video has been prepared to illustrate the usage of the tool (see: https://youtu .be /lRYoc8HZ -sQ and https://youtu .be /
KQYHd7XLHMg).

The tool can be used to model an SoS and thereby also the tracelinks to support traceability management. For traceability 
management we have also implemented the queries of Table 3. Using the queries we can realize traceability management 
and provide the results for the following scenarios (1) SoS modeling and consistency checking (2) traceability link extraction 
and description (3) impact analysis (4) dynamic changing of trace semantics.

The process for defining and realizing traceability management queries is shown in Fig. 12. The left part of the figure 
shows the process for modeling the system decomposition consisting of SoS, systems, sub-systems, and components. After 
modeling the system decomposition, the capabilities and the corresponding trace links and their semantics are defined. An 
example of such a system is shown in the decomposition view of the smart city case study as shown in Fig. 2 and the uses 
view as shown in Fig. 3, and the example capability set as shown in Table 2. These elements are all expressed using the 
DSL as described in the previous section, and shown in the snapshot of the tools as shown in Fig. 11. Using the DSL in the 
tool we can thus easily develop the structure of an SoS with the required system elements, capabilities, and trace links.

While the left part of the process model includes the preparation, the right part of the process defines the usage of 
the tool and the developed models to support traceability management queries. For this, first a higher level query will be 
defined. An example of such a query is for example: “What is the impact of changes to smart logistics to the security in the overall 
smart city?”. These higher level (business) queries are translated to the queries that we have defined in Table 3.

For this it is important to have a sufficient knowledge on the addressed problem, in this case, security. As stated earlier 
in corresponding the scenario (S3), security is usually an important capability in a city that actually is related to and has 
an impact to multiple different system elements as well as other capabilities. For enhancing the overall security in a city 
it is important that we have a clear picture on the system elements that have an impact on supporting security, that is, 
which require the security capability. Changes to the system elements and/or the capabilities might lead to security threats 
and weaken the system. Security is often related to the protection of personnel, hardware, software, networks and data 

https://youtu.be/lRYoc8HZ-sQ
https://youtu.be/KQYHd7XLHMg
https://youtu.be/KQYHd7XLHMg


B. Tekinerdogan, F. Erata / Science of Computer Programming 191 (2020) 102416 13
Fig. 12. Process for realizing traceability management queries.

from actions and events that could cause serious loss or damage, Two key capabilities can be identified: access control and 
surveillance. Access control is needed to block potential attackers. Surveillance is needed to monitor possible anomalies and 
breaches and likewise take action. We could elaborate on this further but it should be clear that the required capabilities 
for the system elements need to be defined properly to ensure system wide security. Given this scenario we would thus 
need the higher level business query into the following refined queries from Table 4:

What are the elements that implement access control capability within smart city SoS?
What are the elements that implement monitoring capability within smart city SoS?
What are the capabilities that are linked to access control within smart city SoS?
What are the capabilities that are linked to monitoring within smart city SoS?
Is capability access control realized in the scope of S1, S2, . . . , Sn?

These queries can be defined and executed using the tool. A synthesis of the results of the queries can then be used to 
support the further decision making process.

One of the key scenarios in SoS modeling is also whether the defined structure is consistent. After the SoS has been 
modeled we can automatically check whether the developed structure is consistent with respect to the defined rules. In 
addition, based on the defined trace links, new trace links can be automatically inferred and contradictions among traces 
can be detected (see Fig. 13). The tool takes the defined SoS model and their manually assigned traces as input, and 
automatically deduces, the missing trace links.

For identifying and depicting the trace links we can use the earlier defined query language which implements the query 
types of Table 3. The details about the configuration and extraction of tracability links and semantics can be found on the 
following Youtube video: https://youtu .be /3cP2wY0oLXA.

8. Related work

In fact, much has been written about traceability and we could identify many different studies that tackle different 
aspects of traceability in these domains. The IEEE provides the following definition of traceability [21]: “Traceability is the 
degree to which a relationship can be established between two or more products of the development process, especially 
products having a predecessor-successor or master-subordinate relationship one another; for example, the degree to which 
the requirements and design of a given software component match.”

In requirements engineering lots of work has been done on tracing requirements from the stakeholders and in the design 
process [22]. In the model-driven engineering approach traceability is considered important for tracing model elements 
[23]. The problem of traceability has also been addressed by the AOSD community encompassing the adoption of aspects 

https://youtu.be/3cP2wY0oLXA


14 B. Tekinerdogan, F. Erata / Science of Computer Programming 191 (2020) 102416
Fig. 13. Snapshot of the tool trace-SoS showing traceability configuration and consistency.

Table 6
Traceability focus in different domains.

Domain Traceability focus

Requirements Engineering Tracing requirements elements within requirements
Tracing to and from design artefacts

Architecture Design Tracing within and across architecture views
Tracing from and to requirements
Tracing to design and implementation artefacts

Model-Driven Development Tracing (generated) model elements

Aspect-Oriented Software Development Tracing crosscutting concerns

System of Systems Tracing within system elements and across system elements
Tracing capabilities

throughout the lifecycle [24], [25]. In our earlier work we have focused on modeling traceability within architecture views 
and for different lifecycle activities [3], [26].

Traceability in SoS is a more recent approach that builds on the approaches in these above domains. Our study can 
be considered from this perspective and is complementary to these approaches. Tracing of capabilities can benefit from 
the work of requirements engineering, since capabilities could be, from one perspective, be considered as higher level 
requirements.

Traceability from the architecture domain can be used to support the traceability among system elements. In particular, 
the notion of views and traceability within architecture and across architecture views can be used to support SoS traceability. 
Our metamodel and the related DSL could be further enhanced to cope also with architecture view traceability.

Traceability of crosscutting capabilities can benefit from aspect-oriented software development. In an SoS the capabilities 
will be typically distributed and allocated over different system elements. Some capabilities will have a more systemic 
character cannot be localized in one system unit and be scattered over different system units. We could state that some 
capabilities will have a crosscutting property [24], [27]. Aspect-Oriented Software Development provides solution for the 
crosscutting problem and could as such be used to solve the problem of crosscutting capability problems. In the context of 
this article this would require enhancing the DSL for expressing queries related to crosscutting concerns.

A summary of the focus on traceability is provided in Table 6. In this article we have elaborated on our earlier work but 
focused on SoS and did not explicitly consider the notion of views or lifecycle activities such as tracing to SoS requirements, 
SoS design artefacts, etc. This is however an open research issue in the context of SoS and we consider this as part of our 
future work.



B. Tekinerdogan, F. Erata / Science of Computer Programming 191 (2020) 102416 15
9. Conclusion

Traceability is an important quality factor that has been addressed in various domains to improve other quality factors 
such as understandability, maintenance and adaptability. In this paper, we have built on the general literature on traceability 
and explored traceability within the context of system of systems (SoS). For managing SoS it is important to provide a 
proper traceability management that can identify the system elements and the capabilities. An important property of SoS 
is the dynamic behavior and the heterogeneity which complicates the traceability management. We have provided the key 
requirements for traceability in SoS and based on these developed a metamodel for traceability in SoS that integrates both 
SoS modeling and tracelink modeling. To address the required rich semantics of SoS we have also provided the relevant trace 
link semantics. If needed these trace link semantics can be easily extended. To provide automated support for traceability 
management we have developed the corresponding DSL and integrated this in our tool Trace-SoS that has been particularly 
developed for traceability management in SoS. With the tool, SoS structure together with the capabilities and the tracelinks 
can be easily modeled. The tool further provides the mechanisms for checking the consistency of the modeled SoS, extract 
and depict the tracelinks, and support impact analysis of a change of a system element and/or capability. We believe that 
the current tool can already be applied for traceability management of SoS. We have illustrated the tool for the modeling 
and traceability analysis of smart city SoS.

We have discussed the well-known classification of SoSs in the literature including directed SoS, acknowledged SoS, 
Collaborative SoS, and Virtual SoS. Our approach and the tool can be adopted for all these types of SoS. However, modeling 
traceability in directed SoS will be the easiest thanks to a strong central management and the possibility to design the 
system for traceability earlier on. Virtual SoS does not have a central management, no agreed purpose and the systems in 
the SoS are largely independent. This makes it difficult to integrate traceability analysis in such systems. Our future work 
will elaborate on adopting the tool method for these different types of SoSs in different application domains. In particular 
traceability management for non-directed SoSs will be challenging. In addition, we will also further experiment with the 
DSL and the tool and enhance this if necessary. Eventually we aim to apply it to more industrial case studies to enhance 
both the state-of-the-art of system of systems and traceability management in general.

References

[1] J.S. Dahmann, K.J. Baldwin, Understanding the current state of us defense systems of systems and the implications for systems engineering, in: 2008 
2nd Annual IEEE Systems Conference, 2008, pp. 1–7.

[2] B. Tekinerdogan, Engineering Connected Intelligence: A Socio-Technical Perspective, Wageningen University, Wageningen, 2017.
[3] B. Tekinerdogan, C. Hofmann, M. Akşit, J. Bakker, Metamodel for tracing concerns across the life cycle, in: Early Aspects: Current Challenges and Future 

Directions, 2007, pp. 175–194.
[4] B. Tekinerdogan, F. Scholten, C. Hofmann, M. Aksit, Concern-oriented analysis and refactoring of software architectures using dependency structure 

matrices, in: Proceedings of the 15th Workshop on Early Aspects, 2009, pp. 13–18.
[5] F. Erata, M. Challenger, B. Tekinerdogan, A. Monceaux, E. Tüzün, G. Kardas, Tarski: a platform for automated analysis of dynamically configurable 

traceability semantics, in: Proceedings of the Symposium on Applied Computing, 2017, pp. 1607–1614.
[6] F. Erata, A. Goknil, B. Tekinerdogan, G. Kardas, A tool for automated reasoning about traces based on configurable formal semantics, in: Proceedings of 

the 2017 11th Joint Meeting on Foundations of Software Engineering, 2017, pp. 959–963.
[7] F. Erata, C. Gardent, B. Gyawali, A. Shimorina, Y. Lussaud, B. Tekinerdogan, G. Kardas, A. Monceaux, ModelWriter: text and model-synchronized docu-

ment engineering platform, in: Proceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering, 2017, pp. 907–912.
[8] B. Tekinerdogan, Multi-dimensional classification of system-of-systems, in: Proc. of 14th Annual Conference System of Systems Engineering, SoSE 2019, 

Anchorage, Alaska, USA, May 19-22, 2019, 2019, pp. 278–283.
[9] M. Henshaw, P. Lister, A.D. Harding, D. Kemp, A.J. Daw, A. Farncombe, M. Touchin, Capability engineering - an analysis of perspectives, in: INCOSE 

International Symposium, vol. 21, 2011, pp. 712–727.
[10] A. Cocchia, Smart and digital city: a systematic literature review, in: Smart City, Springer, 2014, pp. 13–43.
[11] M. Lacinák, J. Ristvej, Smart city, safety and security, Proc. Eng. 192 (2017) 522–527.
[12] T.-h. Kim, C. Ramos, S. Mohammed, Smart city and IoT, Future Gener. Comput. Syst. 76 (2017) 159–162.
[13] E. Cavalcante, N. Cacho, F. Lopes, T. Batista, F. Oquendo, Thinking smart cities as systems-of-systems: a perspective study, in: Proceedings of the 2nd 

International Workshop on Smart, 2016, p. 9.
[14] C. Lim, K.-J. Kim, P.P. Maglio, Smart cities with big data: reference models, challenges, and considerations, Cities 82 (2018) 86–99.
[15] J. Cleland-Huang, O. Gotel, A. Zisman, et al., Software and Systems Traceability, vol. 2, Springer, 2012.
[16] J. Cleland-Huang, O.C. Gotel, J. Huffman Hayes, P. Mäder, A. Zisman, Software traceability: trends and future directions, in: Proceedings of the on Future 

of Software Engineering, 2014, pp. 55–69.
[17] A. Krokhin, P. Jeavons, P. Jonsson, Reasoning about temporal relations: the tractable subalgebras of Allen’s interval algebra, J. ACM 50 (2003) 591–640.
[18] M. Strembeck, U. Zdun, An approach for the systematic development of domain-specific languages, Softw. Pract. Exp. 39 (2009) 1253–1292.
[19] B. Tekinerdogan, E. Arkin, ParDSL: a domain-specific language framework for supporting deployment of parallel algorithms, Softw. Syst. Model. (2018) 

1–29.
[20] G. Kahraman, S. Bilgen, A framework for qualitative assessment of domain-specific languages, Softw. Syst. Model. 14 (2015) 1505–1526.
[21] IEEE Std. 610.12-1990 – IEEE standard glossary of software engineering terminology, IEEE Computer Society, Los Alamitos, CA, 1990, 169.
[22] B. Ramesh, M. Jarke, Toward reference models for requirements traceability, IEEE Trans. Softw. Eng. 27 (2001) 58–93.
[23] L. Bondé, P. Boulet, J.-L. Dekeyser, Traceability and interoperability at different levels of abstraction in model-driven engineering, in: Applications of 

Specification and Design Languages for SoCs, Springer, 2006, pp. 263–276.
[24] R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M.P. Alarcon, J. Bakker, B. Tekinerdogan, S. Clarke, A. Jackson, Survey of analysis and design approaches, 

AOSD-Europe Report D 11, 2005, 8.

http://refhub.elsevier.com/S0167-6423(20)30027-7/bib4461686D616E6E32303038s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib4461686D616E6E32303038s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib54656B696E6572646F67616E3230313764s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib54656B696E6572646F67616E32303037s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib54656B696E6572646F67616E32303037s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib54656B696E6572646F67616E32303039s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib54656B696E6572646F67616E32303039s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib45726174613230313768s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib45726174613230313768s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib45726174613230313769s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib45726174613230313769s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib45726174613230313764s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib45726174613230313764s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib54656B696E6572646F67616E3139s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib54656B696E6572646F67616E3139s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib48656E7368617732303131s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib48656E7368617732303131s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib436F636368696132303134s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib4C6163696E616B32303137s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib4B696D32303137s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib436176616C63616E746532303136s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib436176616C63616E746532303136s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib4C696D32303138s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib436C656C616E642D4875616E6732303132s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib4D6164657232303134s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib4D6164657232303134s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib4B726F6B68696E32303033s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib537472656D6265636B32303039s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib54656B696E6572646F67616E32303138s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib54656B696E6572646F67616E32303138s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib4B616872616D616E32303135s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib4945454531393930s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib52616D65736832303031s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib426F6E646532303036s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib426F6E646532303036s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib43686974636879616E32303035s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib43686974636879616E32303035s1


16 B. Tekinerdogan, F. Erata / Science of Computer Programming 191 (2020) 102416
[25] B. Tekinerdogan, ASAAM: aspectual software architecture analysis method, in: Proceedings. Fourth Working IEEE/IFIP Conference on Software Architec-
ture, WICSA 2004, 2004, pp. 5–14.

[26] B. Tekinerdogan, C. Hofmann, M. Aksit, Modeling traceability of concerns in architectural views, in: Proceedings of the 10th International Workshop on 
Aspect-Oriented Modeling, 2007, pp. 49–56.

[27] B. Tekinerdogan, C. Hofmann, M. Aksit, Modeling traceability of concerns for synchronizing architectural views, J. Object Technol. 6 (2007) 7–25.

http://refhub.elsevier.com/S0167-6423(20)30027-7/bib54656B696E6572646F67616E32303034s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib54656B696E6572646F67616E32303034s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib54656B696E6572646F67616E3230303761s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib54656B696E6572646F67616E3230303761s1
http://refhub.elsevier.com/S0167-6423(20)30027-7/bib54656B696E6572646F67616E3230303762s1

	Automated reasoning framework for traceability management of system of systems
	1 Introduction
	2 System of systems and capability engineering
	3 Case study: smart city engineering
	4 Requirements for SoS traceability
	4.1 Explicit modeling of SoS structure and the capabilities
	4.2 Explicit modeling of dependency relations in the SoS
	4.3 Support for automated tracing queries
	4.4 Dynamic adaptation of traceability semantics
	4.5 Support for traceability within and across system boundaries

	5 Metamodel for traceability in SoS
	5.1 Traceability metamodel
	5.2 Traceability analysis

	6 Trace-SoS: DSL for the SoS traceability metamodel
	7 Tool support and traceability management process
	8 Related work
	9 Conclusion
	References


