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Random Self-Reducible Properties 
[Blum, Luby, and Rubinfeld (BLR). 1993] 

Blum - Turing award 1995

To calculate 
 

you can instead calculate 
 

for any random numbers  and 

P(a, b) = a ⋅ b

P(a + r1, b + r2) − P(a, r2) − P(b, r1) − P(r1, r2)
r1 r2
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Overview of the Countermeasure 
against power side-channels (randomization) & fault injections (redundancy) 

f(x + y) = f(x) + f(y)

x and y are 
sensitive.
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Random Self-Reducible Properties 
[Blum, Luby, and Rubinfeld (BLR). 1993] 

Blum - Turing award 1995

f(x) = F(x, u1, …, uc, f(u1), …, f(uc))

Let  and  be an integer. We say that   is -random self-reducible 
if  can be computed at any particular input  via:

x ∈ 𝔻 c > 1 f c
f x

where  can be computed asymptotically faster than  and the 's are uniformly 

distributed, although not necessarily independent; e.g., given the value of  it is 
not necessary that  be randomly distributed in 

F f ui

u1

u2 𝔻



RSR against Power Side Channel Attacks 
-secure-countermeasure PSCAc

Masking with Random Self-Reducibility 
If a cryptographic operation has a random self-reducible property, then it is 
possible to protect it against power side-channel attacks by masking with 

arithmetic secret sharing.



RSR against Power Side Channel Attacks 
-secure-countermeasure PSCAc

Black-box 
If we replace the  function with a program  that computes the function , then 
our countermeasure  access  as a black-box and computes the function 

using the random self-reducible properties of .

f P f
C̃ P f

f



Self-Correctness against Fault Injections Attacks 
-secure countermeasure FIAn

Self-Correctness with Majority Voting 
Fault injection attacks rely on faulty output. By majority voting, we can 

obtain correct results even if some results are incorrect.



Example 
-secure mod operation (c, n) (P, R, x, c, n)

This algorithm presents an example of a combined and configurable 
countermeasure, effective against both PSCA and FIA.  

In Line 2, the algorithm divides the input  into  shares , satisfying 
.

x c x1, x2, …, xc
x = x1 + x2 + ⋯ + xc



 and attacker’s probability of success 
 -fault tolerance

n
ε

  Let  be the upper bound on the attacker's probability of injecting a fault 
successfully at an unprotected program  that correctly implements a function .

ε
P f

Lower bound for . The attacker's probability of success is , and for a -secure 
countermeasure, the lower bound for  is defined as: 

, where  is the confidence parameter.

n ε c
n

n = log(1/δ)2(1 − εc)/(εc/2)2 δ

Say that the program  is -fault tolerant for the function  provided  for 
at least  of any input , which is  

P ε f P(x) = f(x)
1 − ε x Prfault[P(x) ≠ f(x)] < ε .



Random Split Function 



Majority Vote Algorithm 
Boyer-Moore’s algorithm



Protected Majority Vote Algorithm 
Boyer-Moore’s algorithm with Fisher-Yates shuffle



Fisher-Yates shuffle 
 



Randomized Self-Reductions [BLR 1993] 
 



Protected Mod Operation 
-secure protected mod operation 2



Protected Mod Operation 
-secure protected mod operation3



Protected Mod Multiplication and Exponentiation 
 



Number Theoretic Transforms (NTT)  



End-to-End Implementations 
RSA-CRT Signature Generation Algorithm



End-to-End Implementations 
CPA Secure Kyber PKE

Existing 
Attack

Prasanna Ravi, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. Fiddling the twiddle constants-fault injection analysis of the 
number theoretic transform. IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 447–481, 2023



End-to-End Implementations 
CPA Secure Kyber PKE



Evaluation 
Power Side-Channel Attack Evaluation t-tests (TVLA)



Evaluation 
Fault Injection Attack Evaluation Heatmaps

We used -secure countermeasure in the experiments.(2,10)
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Evaluation 
Reduction in Faults for Different Operations



Limitations 
 

The countermeasure’s effectiveness is intrinsically linked to the random self-reducibility 
of the function being protected. This dependency means that our approach may
not be universally applicable to all cryptographic operations.

Redundancy and randomness inevitably introduce computational overhead. 
Nevertheless, each call to original function P can be easily parallelized in hardware or 
vectorized software implementations.

Our approach is not tailored to defend against attacks targeting the random number 
generator itself.



Future Work 
 

Compare it to Masked Implementations from Power Side-Channel Perspective such as 
complex NTT circuits.

Vectorized or Hardware support to cope with extra latency
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