
Systematic Use of Random Self-Reducibility
in Cryptographic Code against

Physical Attacks

Ferhat Erata￼ , TingHung Chiu￼ , Anthony Etim￼ , Srilalith Nampally￼ , Tejas Raju￼ , Rajashree Ramu￼ ,
Ruzica Piskac￼ , Timos Antonopoulos￼ , Wenjie Xiong￼ Jakub Szefer￼

 
￼ Yale University, ￼ Virginia Tech

† ⋆ † ⋆ ⋆ ⋆
† † ⋆ †

† ⋆

2024 ACM/IEEE International Conference on Computer-Aided Design (ICCAD ’24), October 17-31, 2024, New Jersey, USA

Random Self-Reducible Properties
[Blum, Luby, and Rubinfeld (BLR). 1993]

Blum - Turing award 1995

To calculate

you can instead calculate

for any random numbers and

P(a, b) = a ⋅ b

P(a + r1, b + r2) − P(a, r2) − P(b, r1) − P(r1, r2)
r1 r2

a

b

Random Self-Reducible Properties
[Blum, Luby, and Rubinfeld (BLR). 1993]

Blum - Turing award 1995

To calculate

you can instead calculate

for any random numbers and

P(a, b) = a ⋅ b

P(a + r1, b + r2) − P(a, r2) − P(b, r1) − P(r1, r2)
r1 r2

a

b

r1

r2

Random Self-Reducible Properties
[Blum, Luby, and Rubinfeld (BLR). 1993]

Blum - Turing award 1995

To calculate

you can instead calculate

for any random numbers and

P(a, b) = a ⋅ b

P(a + r1, b + r2) − P(a, r2) − P(b, r1) − P(r1, r2)
r1 r2

a

b

r1

r2

Random Self-Reducible Properties
[Blum, Luby, and Rubinfeld (BLR). 1993]

Blum - Turing award 1995

To calculate

you can instead calculate

for any random numbers and

P(a, b) = a ⋅ b

P(a + r1, b + r2) − P(a, r2) − P(b, r1) − P(r1, r2)
r1 r2

a

b

r1

r2

Random Self-Reducible Properties
[Blum, Luby, and Rubinfeld (BLR). 1993]

Blum - Turing award 1995

To calculate

you can instead calculate

for any random numbers and

P(a, b) = a ⋅ b

P(a + r1, b + r2) − P(a, r2) − P(b, r1) − P(r1, r2)
r1 r2

a

b

r1

r2

Random Self-Reducible Properties
[Blum, Luby, and Rubinfeld (BLR). 1993]

Blum - Turing award 1995

To calculate

you can instead calculate

for any random numbers and

P(a, b) = a ⋅ b

P(a + r1, b + r2) − P(a, r2) − P(b, r1) − P(r1, r2)
r1 r2

a

b

r1

r2

Random Self-Reducible Properties
[Blum, Luby, and Rubinfeld (BLR). 1993]

Blum - Turing award 1995

Systematic Use of Random Self-Reducibility against
Physical Attacks
[Erata et al., ICCAD’24]

Erata, F., Chiu, T., Etim, A., Nampally, S., Raju, T., Ramu, R., Piskac, R., Antonopoulos, T., Xiong, W. and Szefer, J.  
Systematic Use of Random Self-Reducibility against Physical Attacks.  
2024 ACM/IEEE International Conference on Computer-Aided Design (ICCAD ’24).  
https://doi.org/10.1145/3676536.3689920

https://doi.org/10.1145/3676536.3689920

Overview of the Countermeasure
against power side-channels (randomization) & fault injections (redundancy)

f(x + y) = f(x) + f(y)

x and y are
sensitive.

Overview of the Countermeasure
against power side-channels (randomization) & fault injections (redundancy)

f(x + y) = f(x) + f(y)

x and y are
sensitive.

Random Self-Reducible Properties
[Blum, Luby, and Rubinfeld (BLR). 1993]

Blum - Turing award 1995

f(x) = F(x, u1, …, uc, f(u1), …, f(uc))

Let and be an integer. We say that is -random self-reducible
if can be computed at any particular input via:

x ∈ 𝔻 c > 1 f c
f x

where can be computed asymptotically faster than and the 's are uniformly

distributed, although not necessarily independent; e.g., given the value of it is
not necessary that be randomly distributed in

F f ui

u1

u2 𝔻

RSR against Power Side Channel Attacks
-secure-countermeasure PSCAc

Masking with Random Self-Reducibility
If a cryptographic operation has a random self-reducible property, then it is
possible to protect it against power side-channel attacks by masking with

arithmetic secret sharing.

RSR against Power Side Channel Attacks
-secure-countermeasure PSCAc

Black-box
If we replace the function with a program that computes the function , then
our countermeasure access as a black-box and computes the function

using the random self-reducible properties of .

f P f
C̃ P f

f

Self-Correctness against Fault Injections Attacks
-secure countermeasure FIAn

Self-Correctness with Majority Voting
Fault injection attacks rely on faulty output. By majority voting, we can

obtain correct results even if some results are incorrect.

Example
-secure mod operation (c, n) (P, R, x, c, n)

This algorithm presents an example of a combined and configurable
countermeasure, effective against both PSCA and FIA.

In Line 2, the algorithm divides the input into shares , satisfying
.

x c x1, x2, …, xc
x = x1 + x2 + ⋯ + xc

 and attacker’s probability of success
 -fault tolerance

n
ε

 Let be the upper bound on the attacker's probability of injecting a fault
successfully at an unprotected program that correctly implements a function .

ε
P f

Lower bound for . The attacker's probability of success is , and for a -secure
countermeasure, the lower bound for is defined as:

, where is the confidence parameter.

n ε c
n

n = log(1/δ)2(1 − εc)/(εc/2)2 δ

Say that the program is -fault tolerant for the function provided for
at least of any input , which is

P ε f P(x) = f(x)
1 − ε x Prfault[P(x) ≠ f(x)] < ε .

Random Split Function

Majority Vote Algorithm
Boyer-Moore’s algorithm

Protected Majority Vote Algorithm
Boyer-Moore’s algorithm with Fisher-Yates shuffle

Fisher-Yates shuffle

Randomized Self-Reductions [BLR 1993]

Protected Mod Operation
-secure protected mod operation 2

Protected Mod Operation
-secure protected mod operation3

Protected Mod Multiplication and Exponentiation

Number Theoretic Transforms (NTT)

End-to-End Implementations
RSA-CRT Signature Generation Algorithm

End-to-End Implementations
CPA Secure Kyber PKE

Existing
Attack

Prasanna Ravi, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. Fiddling the twiddle constants-fault injection analysis of the
number theoretic transform. IACR Transactions on Cryptographic Hardware and Embedded Systems, pages 447–481, 2023

End-to-End Implementations
CPA Secure Kyber PKE

Evaluation
Power Side-Channel Attack Evaluation t-tests (TVLA)

Evaluation
Fault Injection Attack Evaluation Heatmaps

We used -secure countermeasure in the experiments.(2,10)

Evaluation
Fault Injection Attack Evaluation Heatmaps

We used -secure countermeasure in the experiments.(2,10)

Evaluation
Fault Injection Attack Evaluation Heatmaps

We used -secure countermeasure in the experiments.(2,10)

Evaluation
Reduction in Faults for Different Operations

Limitations

The countermeasure’s effectiveness is intrinsically linked to the random self-reducibility
of the function being protected. This dependency means that our approach may
not be universally applicable to all cryptographic operations.

Redundancy and randomness inevitably introduce computational overhead.
Nevertheless, each call to original function P can be easily parallelized in hardware or
vectorized software implementations.

Our approach is not tailored to defend against attacks targeting the random number
generator itself.

Future Work

Compare it to Masked Implementations from Power Side-Channel Perspective such as
complex NTT circuits.

Vectorized or Hardware support to cope with extra latency

Erata, F., Chiu, T., Etim, A., Nampally, S., Raju, T., Ramu, R., Piskac, R., Antonopoulos, T., Xiong, W. and Szefer, J.  
Systematic Use of Random Self-Reducibility against Physical Attacks.  
2024 ACM/IEEE International Conference on Computer-Aided Design (ICCAD ’24).  
https://doi.org/10.1145/3676536.3689920

https://doi.org/10.1145/3676536.3689920

